Dynamic control of Gaussian morphing structures via embedded fluidic networks
Transforming a flat plate into a doubly curved shell is not possible without distorting in-plane distances, as stated by Gauss in his seminal theorem. In natural morphogenesis, this strong geometrical constraint is overcome by dif...
ver más
31/12/2029
Líder desconocido
1M€
Presupuesto del proyecto: 1M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-17
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DynaMorph
Duración del proyecto: 62 meses
Fecha Inicio: 2024-10-17
Fecha Fin: 2029-12-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transforming a flat plate into a doubly curved shell is not possible without distorting in-plane distances, as stated by Gauss in his seminal theorem. In natural morphogenesis, this strong geometrical constraint is overcome by differential growth in the tissues, which induces mechanical stresses and thus the buckling in a rich variety of shapes. Over the last decade, emerging approaches have embraced this paradigm to develop bioinspired synthetic responsive materials with in-plane distortions, and hence shape-morphing capabilities. However, despite rapid developments, current efforts primarily focus on programming the final equilibrium shape, overseeing the dynamical trajectory of the transformation but also the mechanics of the morphed structure. As a result, exciting biomedical applications perspective in minimally invasive surgery, rehabilitation and soft robotics remain so far elusive.
Here, I aim to develop structures in which the shape, but also the mechanics and the dynamical deformation trajectory may be programmed in time. To do so, I propose to develop hybrid elastic plates embedding a network of fluid-filled cavities. First, I will generalise design principles to create unit cells that dispose of all six deformation modes (both in-plane and out-of-plane) when pressurized. Assembling such cells will enable univocal shape selection but also internal degrees of freedom to control the frustrated mechanics. Then, I will unravel the coupling between fluid viscosity and cavity geometry to spatially control the homogenized viscoelastic property of the material. The subsequent timescales will be finally used to program the dynamical deformation trajectory of the structure when submitted to a mechanical or fluidic load.
Taken together, I propose to develop new experimental standards and theoretical frameworks to pave the way for the first fully controllable shape-morphing materials, with applications for adaptive peristaltic endotracheal cuffs in view.