Innovating Works

DUST-IN-THE-WIND

Financiado
Dust in the wind a new paradigm for inflow and outflow structures around super...
Dust in the wind a new paradigm for inflow and outflow structures around supermassive black holes Active galactic nuclei (AGN) represent the active growing phases of supermassive black holes. For the first time, we are able to resolve the dusty gas on parsec scales and directly test our standard picture of these objects. While... Active galactic nuclei (AGN) represent the active growing phases of supermassive black holes. For the first time, we are able to resolve the dusty gas on parsec scales and directly test our standard picture of these objects. While this unification scheme relates the parsec-scale IR emission with a geometrically-thick disk, I have recently found that the bulk of the dust emission comes from the polar region of the alleged disk where gas is blown out from the vicinity of the black hole. Along with these polar features, the compactness of the dust distribution seems to depend on the accretion state of the black hole. Neither of these findings have been predicted by current models and lack a physical explanation. To explain the new observations, I proposed a revision to the AGN unification scheme that involves a dusty wind driven by radiation pressure. Depending on their masses, velocities, and frequency, such dusty winds might play a major role in self regulating AGN activity and, thus, impact the interplay between host and black hole evolution. However, as of now we do not know if these winds are ubiquitous in AGN and how they would work physically. Upon completion of the research program, I want to • characterise the pc-scale mass distribution, its kinematics, and the connection to the accretion state of the AGN, • have a physical explanation of the dusty wind features and constrain its impacts on the AGN environment, and • have established dust parallax distances to several nearby AGN, as a multi-disciplinary application of the constraints on the dust distribution. For that, I will combine the highest angular resolution observations in the IR and sub-mm to create the first pc-scale intensity, velocity, and density maps of a sample of 11 AGN. I will develop a new model that combines hydrodynamic simulations with an efficient treatment of radiative transfer to simulate dusty winds. Finally, direct distances to 12 AGN with a combined 3% precision will be measured. ver más
30/09/2021
1M€
Duración del proyecto: 69 meses Fecha Inicio: 2015-12-03
Fecha Fin: 2021-09-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-09-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-StG-2015: ERC Starting Grant
Cerrada hace 9 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITY OF SOUTHAMPTON No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5