Double Incremental Expansion in Potential Energies from Automized Computational...
Double Incremental Expansion in Potential Energies from Automized Computational Exploration
"Modern computational methods of quantum chemistry are valuable and well-established tools for interpretations, refinements, and even predictions of experimental results. Recent advances within linear-scaling (with the system size...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2015-69363-P
OMPUTACION DEL ESTADO EXCITADO: DE ESPECTROS MOLECULARES A S...
58K€
Cerrado
StanDUP
Static and Dynamic aproaches: A Unified Framework for Predic...
176K€
Cerrado
DRESSED-pCCD
Devising Reliable Electronic Structure Schemes through Eclec...
1M€
Cerrado
aCCuracy
Turning gold standard quantum chemistry into a routine simul...
1M€
Cerrado
BES-2016-076986
PROGRESO EN TOPOLOGIA QUIMICO CUANTICA CUANTITATIVA: DE LA E...
93K€
Cerrado
BES-2015-072055
SIMULACION DE PROCESOS REACTIVOS EN PROTEINAS Y ENZIMAS MEDI...
93K€
Cerrado
Información proyecto DIEinPEACE
Duración del proyecto: 24 meses
Fecha Inicio: 2019-04-05
Fecha Fin: 2021-04-30
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Descripción del proyecto
"Modern computational methods of quantum chemistry are valuable and well-established tools for interpretations, refinements, and even predictions of experimental results. Recent advances within linear-scaling (with the system size) approaches allowed routine and efficient treatments of electronic structures of much larger molecular systems than those accessible in previous decades. This has the potential to extend the applicability of quantum chemistry to very large biomolecules. However, reaching a close to linear-scaling behavior for a single point calculation is by no means near to providing an efficient description of the total potential energy surface. Because potential energy surfaces are cornerstones for obtaining a detailed knowledge of reactivity, photochemical properties, vibrational motion, etc., development of a computationally inexpensive but accurate quantum chemical methodology for potential energy surface calculations of large biomolecules (such as proteins) is of extreme importance for chemical science. The proposed project aims at filling this gap by developing an ab initio, linear-scaling, and ""black-box"" machinery for protein potential energy surfaces calculations, where the linear-scaling refers to the total computational cost. This will be achieved by combining ideas of partitioning the total system into subsystems and incremental expansions of potential energy surfaces with efficient and accurate computational algorithms and modern concepts of machine leaning. The proposed strategy will enable theoretical spectra simulations for much larger biomolecules. This will significantly advance the current stage of the field and help to reveal many new and intricate details about structures and dynamics of proteins."