Neural progenitor cells undergo tens of thousands of cell divisions to generate the 80 billion neurons in a human brain. In neural progenitor cells, replication stress can lead to recurrent DNA break clusters (RDCs). Joining of tw...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CHROMATINREPAIRCODE
CHROMATIN REPAIR CODE Hacking the chromatin code for DNA re...
2M€
Cerrado
H3.3CANCER
The histone H3.3 variant in brain cancer pathogenesis
2M€
Cerrado
NEURINFDNA
Neuronal DNA double strand breaks as novel epigenetic actors...
142K€
Cerrado
BFU2010-16372
ROTURAS DE ADN ASOCIADAS A REPLICACION Y REPARACION POR RECO...
835K€
Cerrado
ChroSoDSB
Chromatin Study of DNA Double Strand Breaks
200K€
Cerrado
DiVineGenoMe
Decoding cell to cell variation in genome integrity maintena...
2M€
Cerrado
Información proyecto BrainBreaks
Duración del proyecto: 62 meses
Fecha Inicio: 2020-10-28
Fecha Fin: 2025-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Neural progenitor cells undergo tens of thousands of cell divisions to generate the 80 billion neurons in a human brain. In neural progenitor cells, replication stress can lead to recurrent DNA break clusters (RDCs). Joining of two RDC breaks may introduce somatic genomic diversity. On the other hand, unbalanced genomic mosaicism in neural progenitor cells may lead to brain cancer and neuropsychiatric disorders. This proposal will test whether cell-autonomous DNA lesions that accumulate during rapid progenitor division contribute to the genetic heterogeneity found across neuronal cell populations.
Aim 1 will elucidate how replication stress drives recurrent break clusters in the neural progenitor cell genome. We will evaluate whether chromatin loop extrusion mechanistically contributes to breakage repairs, and thus helps shape genomic structure variations.
Aim 2 will quantify the extent and impact of tissue-specific recurrent break clusters in the embryonic brain. I will create a mouse model to identify DNA breaks in temporal and cell-type-specific manner across the entire population of neuronal progenitor cells.
Aim 3 will evaluate whether replicative stress drives the recurrent genomic alteration in the RDC-containing gene during embryonic neurogenesis. We will investigate one of the RDC-containing gene Neurexin 1, where deletion or truncation results in neurological disorders.
By combining a powerful in vitro cell line-based tool, versatile in vivo mouse models, and cutting-edge multi-omics approaches, we will uncover the mechanisms that are critical to the fields of genomics and developmental neuroscience and may also provide valuable new insights into neuropsychiatric disorders and tumor biology.