Distributed and Massively Parallel Graph Algorithms
With the rapidly growing size of the data and the pervasiveness of distributed systems and networks, it is a certainty that distributed and parallel computations will play a vital role in the computations of the future. This proje...
With the rapidly growing size of the data and the pervasiveness of distributed systems and networks, it is a certainty that distributed and parallel computations will play a vital role in the computations of the future. This project aims to advance our understanding of the foundational aspects of these areas. We tackle some of the central questions in distributed algorithms and massively parallel algorithms for graph problems, which require us to go well-beyond the current state of the art. Our research plan involves three directions:
- Developing efficient and particularly polylogarithmic-time deterministic distributed algorithms for some of the central graph problems of the area. Our hope is to do this through a general derandomization method that removes the randomness from efficient randomized algorithms. This question underlies some of the well-known open problems of the area.
- Developing improved and particularly sublogarithmic-time randomized distributed algorithms for some of the central local graph problems of the area, thus hopefully narrowing or ideally closing this decade old gap to the respective lower bounds.
- Developing improved massively parallel algorithms for some of the fundamental graph problems, with a special focus on the challenging regime of lower memory machines, which remains widely open.
Given the high risk nature of these questions, in each direction, besides our plan of attack on the bigger and more ambitious objectives, we also explain a number of smaller problems, which should be more feasible, and which would serve as stepping stones toward the bigger goal. Moreover, we are hopeful that the simultaneous study of distributed algorithms and massively parallel will lead to a strengthening of the connections between these two areas and would also bring the related scientific communities closer to each other.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.