Dissecting the biophysical mechanisms of deep brain stimulation using voltage fl...
Dissecting the biophysical mechanisms of deep brain stimulation using voltage fluorescence microscopy
Deep brain stimulation (DBS) is a promising neuromodulation technique for the treatment of neurological and psychiatric diseases. DBS electrically stimulates brain tissue via implanted electrodes. However, the biophysical and ther...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIMS
Deep Brain Neuromodulation using Temporal Interference Magne...
150K€
Cerrado
BRAINAMICS
Neuromodulatory control of brain network dynamics
2M€
Cerrado
BES-2017-082029
STIMULACION CEREBRAL NO INVASIVA CON CAMPOS MAGNETICOS ESTAT...
93K€
Cerrado
SAF2017-86246-R
ESTIMULACION TRANSCRANEAL POR CAMPO MAGNETICO ESTATICO EN LA...
182K€
Cerrado
PID2020-112947RB-I00
CORTICOMOD:NEUROMODULACION CORTICAL ENDOGENA Y EXOGENA POR C...
411K€
Cerrado
PTQ-12-05679
Simulación y análisis 3D de protocolos de neuroestimulación...
95K€
Cerrado
Información proyecto OptoDBS
Duración del proyecto: 60 meses
Fecha Inicio: 2023-12-12
Fecha Fin: 2028-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Deep brain stimulation (DBS) is a promising neuromodulation technique for the treatment of neurological and psychiatric diseases. DBS electrically stimulates brain tissue via implanted electrodes. However, the biophysical and therapeutic mechanisms underlying DBS remain largely unknown. While long-standing theories suggest that DBS suppresses neurons, subsequent studies have shown that DBS activates neurons via direct axonal excitation modulating membrane dynamics, information transfer, and network synchronization. Unfortunately, this conundrum has been difficult to resolve experimentally because of (1) the electrical interference occurring in electrode-based recordings and (2) the challenge of measuring cellular-level membrane voltage dynamics in the awake brain.
In this proposal, I will overcome for the first time both key challenges by using a novel in-vivo voltage fluorescence optical technique that permits the direct recording of the membrane voltage from identified neurons in awake animals, free of electrical interference. I will combine voltage fluorescence microscopy and electrical stimulation in a mouse model of epilepsy to optically dissect the cellular mechanisms underlying therapeutic DBS for reducing seizures in the limbic system.
This innovative and comprehensive approach will provide novel insights into the cellular and circuit processes occurring during DBS in the awake epileptic brain. This research program will provide an unprecedented opportunity to build a mechanistic framework of DBS and stimulation parameter selection with the ultimate goal of identifying more effective and targeted DBS protocols for human patients.