"DISRUPT, which stands for ""DISorder in Ultrafast Phase Transitions,"" represents a theoretical physics initiative with the primary aim of harnessing both static and time-dependent disorder to gain full control over ultrafast pha...
ver más
28/02/2027
COLLEGE DE FRANCE
196K€
Presupuesto del proyecto: 196K€
Líder del proyecto
COLLEGE DE FRANCE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-03-14
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DISRUPT
Duración del proyecto: 35 meses
Fecha Inicio: 2024-03-14
Fecha Fin: 2027-02-28
Líder del proyecto
COLLEGE DE FRANCE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
196K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"DISRUPT, which stands for ""DISorder in Ultrafast Phase Transitions,"" represents a theoretical physics initiative with the primary aim of harnessing both static and time-dependent disorder to gain full control over ultrafast phase transitions occurring in quantum materials.
A key aspiration within the realm of nonequilibrium physics is to attain the ability to manipulate the properties of quantum materials over time, offering numerous potential applications in high-impact technologies such as ultrafast electronics, probabilistic computing, and quantum computing. However, in experiments where a pump-probe approach is employed, disorder is often viewed as an unwelcome factor that threatens to undermine the vision of achieving complete control over the dynamics of quantum many-body systems through the use of light. Our objective is to challenge this conventional perspective and demonstrate that disorder serves two fundamental purposes: Firstly, it enables us to place the system in nonthermal states that would be otherwise inaccessible under equilibrium conditions (as seen in ultrafast inhomogeneous disordering). Secondly, it allows us to theoretically devise robust mechanisms for preventing the thermalization of quantum systems, with direct implications for quantum memory technology. This dual objective lies at the core of our proposal.
To accomplish these objectives, we plan to implement, for the first time according to our knowledge, an out-of-equilibrium extension of real-space Dynamical Mean Field Theory. This will enable us to investigate both the (absence of) thermalization in correlated electron systems experiencing static quenched disorder (Many-Body Localization) and the ultrafast inhomogeneous disordered transition in vanadium dioxide involving annealed time-dependent disorder."