Disequilibirum metamorphism of stressed lithosphere
Most changes in mineralogy, density, and rheology of the Earth’s lithosphere take place by metamorphism, whereby rocks evolve through interactions between minerals and fluids. These changes are coupled with a large range of geodyn...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2008-01130
PROCESOS TECTONICOS ASOCIADOS AL RECICLADO POLI-OROGENICO EN...
247K€
Cerrado
CGL2010-21298
EVOLUCION GEODINAMICA PREVARISCA Y VARISCA DEL NE DE IBERIA...
83K€
Cerrado
CGL2016-78796-C2-1-P
EVOLUCION GEOQUIMICA DEL MANTO DE ESPAÑA PENINSULAR DESDE EP...
77K€
Cerrado
CGL2010-14848
FORMACION, MODIFICACION Y EMPLAZAMIENTO DEL MANTO LITOSFERIC...
138K€
Cerrado
LITHO3
Quantifying the formation and evolution of the Archaean lith...
2M€
Cerrado
PID2020-114872GB-I00
GENERACION EXPERIMENTAL DE FLUIDOS METAMORFICOS Y SU INTERAC...
230K€
Cerrado
Información proyecto DIME
Duración del proyecto: 79 meses
Fecha Inicio: 2015-07-10
Fecha Fin: 2022-02-28
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
3M€
Descripción del proyecto
Most changes in mineralogy, density, and rheology of the Earth’s lithosphere take place by metamorphism, whereby rocks evolve through interactions between minerals and fluids. These changes are coupled with a large range of geodynamic processes and they have first order effects on the global geochemical cycles of a large number of elements.
In the presence of fluids, metamorphic reactions are fast compared to tectonically induced changes in pressure and temperature. Hence, during fluid-producing metamorphism, rocks evolve through near-equilibrium states. However, much of the Earth’s lower and middle crust, and a significant fraction of the upper mantle do not contain free fluids. These parts of the lithosphere exist in a metastable state and are mechanically strong. When subject to changing temperature and pressure conditions at plate boundaries or elsewhere, these rocks do not react until exposed to externally derived fluids.
Metamorphism of such rocks consumes fluids, and takes place far from equilibrium through a complex coupling between fluid migration, chemical reactions, and deformation processes. This disequilibrium metamorphism is characterized by fast reaction rates, release of large amounts of energy in the form of heat and work, and a strong coupling to far-field tectonic stress.
Our overarching goal is to provide the first quantitative physics-based model of disequilibrium metamorphism that properly connects fluid-rock interactions at the micro and nano-meter scale to lithosphere scale stresses. This model will include quantification of the forces required to squeeze fluids out of grain-grain contacts for geologically relevant materials (Objective 1), a new experimentally based model describing how the progress of volatilization reactions depends on tectonic stress (Objective 2), and testing of this model by analyzing the kinetics of a natural serpentinization process through the Oman Ophiolite Drilling Project (Objective 3).