Discovery of new Frontal Temporal Dementia multimodal spectral markers in bioflu...
Discovery of new Frontal Temporal Dementia multimodal spectral markers in biofluids.
The central aim of the project is to apply multimodal spectroscopy combined with machine learning to identify a fingerprint for Frontal Temporal Dementia (FTD) and Alzheimer’s disease (AD) in saliva and plasma. FTD is the second m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2009-09538
DESARROLLO DE METODOS DE DIAGNOSTICO DE LA ENFERMEDAD DE ALZ...
93K€
Cerrado
TEC2008-02241
ANALISIS ESPECTRAL Y NO LINEAL DE LA SEÑAL DE MAGNETOENCEFAL...
56K€
Cerrado
TEC2008-02113
NUEVAS TECNICAS DE RECONSTRUCCION, PROCESADO, CLASIFICACION...
66K€
Cerrado
TEC2008-02113
NUEVAS TECNICAS DE RECONSTRUCCION, PROCESADO, CLASIFICACION...
66K€
Cerrado
TIN2013-47152-C3-2-R
DETECCION TEMPRANA DE SINDROMES DE FRAGILIDAD Y DEMENCIA MED...
68K€
Cerrado
RTC-2016-5054-1
VALIDACIÓN EN CONDICIONES REALES DE PRÁCTICA CLÍNICA HABITUA...
668K€
Cerrado
Información proyecto IR4FTD
Duración del proyecto: 41 meses
Fecha Inicio: 2023-04-24
Fecha Fin: 2026-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The central aim of the project is to apply multimodal spectroscopy combined with machine learning to identify a fingerprint for Frontal Temporal Dementia (FTD) and Alzheimer’s disease (AD) in saliva and plasma. FTD is the second most common dementia and usually affects individuals younger than 60 years old. FTD is difficult to diagnose, since there is no single exam that determines the disease, but instead many costly or painful exams that together link the disease. Some of the symptoms of the disease may be confounding with others such as AD. While the usual search for biomarkers focuses on individual patterns, the present proposal is to use a holistic approach. Vibrational spectroscopy provides a snapshot of the entire chemical finger print in a label-free way. In this project, samples from FTD, AD, and healthy subjects of >45 years old, will be analysed using Raman, mid and near infrared spectroscopy @Monash University in Australia, and complemented with Mass Spectrometry on the same samples @ICGEB in Italy. Advanced machine learning tools provide a powerful approach for data analysis unravelling hidden trends, correlations and also identify the main contributions that characterize the type of sample. The spectra recorded using the extended wavelength range encompassing the mid-infrared and near-infrared spectral regions will be processed with state-of-the-art machine learning tools to identify the molecular phenotype and establish markers in patients with TDP and AD. These findings will pave the way to the development of a new screening tool that would decrease the costs associated with the current diagnosis of FTD and in general for neurodegenerative disorders.