Discovering novel control strategies for turbulent wings through deep reinforcem...
Discovering novel control strategies for turbulent wings through deep reinforcement learning
Over the past decades, aviation has become an essential component of today’s globalized world: before the current pandemic of coronavirus disease 2019 (COVID-19), over 100,000 flights took off everyday worldwide, and a number of s...
Over the past decades, aviation has become an essential component of today’s globalized world: before the current pandemic of coronavirus disease 2019 (COVID-19), over 100,000 flights took off everyday worldwide, and a number of studies indicate that after the pandemic its relevance in the transportation mix will be similar to that before COVID-19. Aviation alone is responsible for 12% of the carbon dioxide emissions from the whole transportation sector, and for 3% of the total CO2 emissions in the world. Due to the major environmental and economical impacts associated to aviation, there is a pressing need for improving the aerodynamic performance of airplane wings to reduce fuel consumption and emissions. This implies reducing the force parallel to the incoming flow, i.e. the drag, and one of the strategies to achieve such a reduction is to perform flow control.
DEEPCONTROL aims at using high-fidelity simulations and deep reinforcement learning to develop a framework for real-time prediction and control of the flow around wing sections and three-dimensional wings based only on sparse measurements. We will first perform high-order spectral-element simulations of wing sections and three-dimensional wings at high Reynolds numbers. Using sparse measurements at the wall, we will reconstruct the velocity fluctuations above the wall within a region of interest. To this end, we will employ a generative adversarial network (GAN), together with a fully-convolutional network (FCN) and modal decomposition. Then, we will perform flow control based on deep reinforcement learning (DRL), which will enable discovering novel solutions in terms of flow actuation and design of winglet geometry. In order to assess the robustness of the framework for real-time applications, we will carry out detailed wind-tunnel experiments at KTH.
This framework will constitute a breakthrough in aviation sustainability, and will enable developing more efficient aeronautical solutions worldwide.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.