Dis inhibitory circuits in the human cerebral cortex
Temporal co-ordination of the activity of cortical neurons underlies cognitive processes. Intracortical inhibitory circuits set temporal windows for modulation of glutamatergic pyramidal cell firing. In non-human mammals, the acti...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GABAXONETDEV
mechanisms of GABAergic interneurons axonal branching in dev...
100K€
Cerrado
SYNAPDOMAIN
Molecular Mechanisms of GABAergic synapse formation spatial...
1M€
Cerrado
GABA CELL TYPES
Differentiation of GABAergic interneuron subtypes in the mou...
100K€
Cerrado
GABASYNAPSES
Local interactions between GABAergic and glutamatergic plast...
45K€
Cerrado
SAF2008-00770
MECANISMOS QUE CONTROLAN EL DESARROLLO DE LAS INTERNEURONAS...
436K€
Cerrado
SAF2011-28845
MECANISMOS CELULARES Y MOLECULARES QUE CONTROLAN EL DESARROL...
545K€
Cerrado
Información proyecto INHIBITHUMAN
Duración del proyecto: 72 meses
Fecha Inicio: 2016-11-30
Fecha Fin: 2022-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Temporal co-ordination of the activity of cortical neurons underlies cognitive processes. Intracortical inhibitory circuits set temporal windows for modulation of glutamatergic pyramidal cell firing. In non-human mammals, the activity of the GABAergic neurons is governed by other specialised GABAergic neurons, which can dis-inhibit pyramidal cells. The overarching aim of this project is to define cellular and pharmacological mechanisms of dis-inhibitory circuits in the human cerebral cortex. These circuits could act as regulators of cognitive process. First, we will investigate the neuron types and their synaptic influences to characterise how dis-inhibition controls synaptic integration and the output of neurons. Second, we will elucidate synaptic plasticity in dis-inhibitory circuits, as plastic events likely represent physiological substrates of cognitive operations. Third, we will identify the subcellular sites and the mechanisms of action of key receptors for ACh, monoamines, endocannabinoids, neuropeptides and mGluRs modulating dis-inhibitory circuits, which are targets of small molecule CNS drugs, such as cognitive enhancers. We will test three hypotheses: 1) the human cortical pyramidal cell output is gated by compartment-specific dis-inhibition mediated by specific interneurons; 2) activity-dependent plasticity occurs in dis-inhibitory circuits and has consequences for the output of cortical pyramidal neurons; 3) small molecule drugs act via dis-inhibitory mechanisms at cell-type specific sites altering the inhibitory dynamics of pyramidal cells leading to subcellular redistribution of inhibition and alteration in their output. Combined electrophysiology/imaging with neuropharmacology and high resolution molecular receptor localisation will generate an unprecedented knowledge of the human cortical circuits. Understanding human cortical neuronal connections and their responses to pharmacological interventions may also lead to novel therapeutic strategies.