Innovating Works

D5S

Financiado
Direct Statistical Simulation of the Sun and Stars
This proposal (D5S) addresses a key problem of astrophysics – the origin of magnetic activity in the sun and solar-type stars. This is a problem not only of outstanding theoretical importance but also significant practical impact... This proposal (D5S) addresses a key problem of astrophysics – the origin of magnetic activity in the sun and solar-type stars. This is a problem not only of outstanding theoretical importance but also significant practical impact – solar activity has major terrestrial consequences. An increase in activity can lead to an increase in the number and violence of solar flares and coronal mass ejections, with profound consequences for our terrestrial environment, causing disruption to satellites and power. Predictions of magnetic activity are highly desired by government and industry groups alike. A deep understanding of the mechanisms leading to solar magnetic activity is required. The variable magnetic field is generated by a dynamo in the solar interior. Though this mechanism is known to involve the interaction of magnetohydrodynamic (MHD) turbulence with rotation, no realistic model for dynamo action currently exists. D5S utilises two recent significant breakthroughs to construct new models for magnetic field generation in the sun and other solar-type stars. The first of these involves an entirely new approach termed Direct Statistical Simulation (DSS) (developed by the PI), where the statistics of the astrophysical flows are solved directly (enabling the construction of more realistic models). This approach is coupled to a breakthrough (recently published by the PI in Nature) in our understanding of the physics of MHD turbulence at the extreme parameters relevant to solar interiors. D5S also uses the methodology of DSS to provide statistical subgrid models for Direct Numerical Simulation (DNS). This will increase the utility, fidelity and predictability of such models for solar magnetic activity. Either of these new approaches, taken in isolation, would lead to significant progress in our understanding of magnetic field generation in stars. Taken together, as in this proposal, they will provide a paradigm shift in our theories for solar magnetic activity. ver más
30/09/2024
2M€
Duración del proyecto: 77 meses Fecha Inicio: 2018-04-19
Fecha Fin: 2024-09-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2024-09-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2017-ADG: ERC Advanced Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITY OF LEEDS No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5