Direct measurements of collective swimming forces at the mesoscale
Swimming is ubiquitous in nature and crucial for the survival of a wide range of organisms. Many swimmers move together in intricate swarms, widely believed to save energy through collective hydrodynamic interactions. While the ph...
Swimming is ubiquitous in nature and crucial for the survival of a wide range of organisms. Many swimmers move together in intricate swarms, widely believed to save energy through collective hydrodynamic interactions. While the physics behind swimming and swarming of viscosity-dominated microswimmers and inertia-dominated macroswimmers has been extensively studied, little is known about the intermediate regime (~ 0.1–10 cm), where both viscous and inertial forces are important. This mesoscale is full of living organisms, such as small larvae, shrimps, and jellyfish, and the physics behind their swimming and swarming is strongly complicated by non-linear and time-dependent effects at increasing swimming speeds and organism sizes. A breakthrough in our understanding of mesoscale swarming dynamics is hindered by an absence of force-based experiments on collective mesoswimming.
Here, I will perform pioneering experiments on the swimming forces of brine shrimps as model organisms. I aim to discover how they adapt their motility in different environments and perform the first direct measurements on the binary and many-body swimming and hydrodynamic interaction forces within pairs and small swarms of brine shrimps. I aim to resolve several major questions on mesoscale motility and swimming interactions, with the grand goal to discover new insights into how and why swarms of mesoswimmers are formed in nature. My experiments will open a new living matter physics research avenue at the mesoscale, and provide sensitive and important force and fluid dynamics data for theorists to use in their future models and for engineers to use in their biomimicry design of new mesorobots. The indirect impact of my work is the creation of new biomedical and engineering applications at the mesoscale, such as swallowable surgery with swarming mesorobots capable of optimising their swarm geometry to minimise power consumption in different environments.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.