Dipolar Physics and Rydberg Atoms with Rare Earth Elements
Strongly magnetic rare-earth atoms are fantastic species to study few- and many-body dipolar quantum physics with ultracold gases. Their appeal leans on their spectacular properties (many stable isotopes, large dipole moment, unco...
Strongly magnetic rare-earth atoms are fantastic species to study few- and many-body dipolar quantum physics with ultracold gases. Their appeal leans on their spectacular properties (many stable isotopes, large dipole moment, unconventional interactions, and a rich atomic spectrum). In 2012 my group created the first Bose-Einstein condensate of erbium and shortly thereafter the first degenerate Fermi gas. My pioneering studies, together with the result on dysprosium by the Lev´s group, have triggered an intense research activity in our community on these exotic species.
The RARE project aims at converting complexity into opportunity by exploiting the newly emerged opportunity provided by magnetic rare-earth atoms to access fascinating, yet rather unexplored, quantum regimes. It roots into two innate properties of magnetic lanthanides, namely their large and permanent magnetic dipole moment, and their many valence electrons. With these properties in mind, my proposal targets to obtain groundbreaking insights into dipolar quantum physics and multi-electron ultracold Rydberg gasses:
1) Realization of the first dipolar quantum mixtures, by combining Er and Dy. With this powerful system, we aim to study exotic states of matter under the influence of the strong anisotropic and long-range dipole-dipole interaction, such as anisotropic Cooper pairing and superfluidity, and weakly-bound polar ErDy molecules.
2) Study of non-polarized dipoles at zero and ultra-weak polarizing (magnetic) fields, where the atomic dipole are free to orient. In this special setting, we plan to demonstrate new quantum phases, such as spin-orbit coupled, spinor, and nematic phases.
3) Creation of multi-electron ultracold Rydberg gases, in which the Rydberg and core electrons can be separately controlled and manipulated.
This innovative project goes far beyond the state of the art and promises to capture truly new scientific horizons of quantum physics with ultracold atoms.
for laterver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.