The ability to engineer materials at the level of single atoms is rapidly becoming an urgent practical requirement as new technologies demand ever smaller devices. However, such a capability also offers profoundly new functionalit...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CNS2023-144257
Materiales con funcionalidad eléctrica, magnética, óptica o...
200K€
Cerrado
Mol-2D
Molecule induced control over 2D Materials
2M€
Cerrado
BES-2014-067942
QUIRALIDAD SUPRAMOLECULAR EN BAJAS DIMENSIONES Y TRANSPORTE...
88K€
Cerrado
PRE2019-087801
DISEÑO Y NANOESTRUCTURACION DE MOLECULAS MULTIFUNCIONALES PA...
98K€
Cerrado
CTQ2015-68370-P
MATERIALES FUNCIONALES MOLECULARES Y NANOESTRUCTURADOS PARA...
162K€
Cerrado
UNIVERSITAET ULM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The ability to engineer materials at the level of single atoms is rapidly becoming an urgent practical requirement as new technologies demand ever smaller devices. However, such a capability also offers profoundly new functionality for molecular-scale devices. The DIAMANT team has pioneered the discovery and development of diamond as a uniquely promising material system for solid-state molecular technologies: Diamond has exceptional optical and magnetic properties that are associated with dopant complexes -- or "solid-state molecules" -- in the diamond lattice. The DIAMANT project will develop new technologies to enable placement of exactly one atom at a time into a selected location in the diamond lattice with nanometre precision. Control of magnetic and optical interactions between single dopants will enable engineering of artificial molecules with radically new functionalities. Applications in the fields of sensing and imaging at the nanoscale, novel data storage and information processing will be developed both theoretically and experimentally. The ability to control magnetic interactions on the atomic scale will enable miniaturisation of electronic devices down to the ultimate size limit -- single molecules. We will manufacture photonic crystal cavities and plasmonic structures in diamond to realise the optical interfaces required for reading-in and reading-out information from these molecular-scale devices. Molecular sensors operating under ambient conditions promise to revolutionise the field of biological imaging and precision sensing. In the long term, determination the structure of single proteins will come within reach.