The cloud computing industry has grown massively over the last decade and with that new areas of application have arisen. Some areas require specialized hardware, which needs to be placed in locations close to the user. User requi...
The cloud computing industry has grown massively over the last decade and with that new areas of application have arisen. Some areas require specialized hardware, which needs to be placed in locations close to the user. User requirements such as ultra-low latency, security and location awareness are becoming more and more common, for example, in Smart Cities, industrial automation and data analytics. Modern cloud applications have also become more complex as they usually run on a distributed computer system, split up into components that must run with high availability. Unifying such diverse systems into centrally controlled compute clusters and providing sophisticated scheduling decisions across them are two major challenges in this field. Scheduling decisions for a cluster consisting of cloud and edge nodes must consider unique characteristics such as variability in node and network capacity. The common solution for orchestrating large clusters is Kubernetes, however, it is designed for reliable homogeneous clusters. Many applications and extensions are available for Kubernetes. Unfortunately, none of them accounts for optimization of both performance and energy or addresses data and job locality.In DECICE, we develop an open and portable cloud management framework for automatic and adaptive optimization of applications by mapping jobs to the most suitable resources in a heterogeneous system landscape. By utilizing holistic monitoring, we construct a digital twin of the system that reflects on the original system. An AI-scheduler makes decisions on placement of job and data as well as conducting job rescheduling to adjust to system changes. A virtual training environment is provided that generates test data for training of ML-models and the exploration of what-if scenarios. The portable framework is integrated into the Kubernetes ecosystem and validated using relevant use cases on real-world heterogeneous systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.