Development of Ultra Speed, resilient, cost-effective LiFi-based Free Space Opti...
Development of Ultra Speed, resilient, cost-effective LiFi-based Free Space Optical Communication to connect Hospitals Departments -clinics and home care patients for next generation Hospita
The development of high-speed communication requirements due to explosive growth of subscribers each year has directed researchers to plan the next generation communication systems that can manage the current growing demand. The m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Duración del proyecto: 31 meses
Fecha Inicio: 2024-02-14
Fecha Fin: 2026-09-25
Líder del proyecto
UNIVERSITA TA MALTA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
177K€
Descripción del proyecto
The development of high-speed communication requirements due to explosive growth of subscribers each year has directed researchers to plan the next generation communication systems that can manage the current growing demand. The millimeter microwaves waves, which function within 30 GHz to 300 GHz, can become prospective carriers for delivering large amounts of data. But, in hospital setups, these radio waves are exposed to strict guidelines due to their direct impact on patient's health as well as high interference with other medical equipment which again imposes severe challenges for patients. The Free Space Optical System might become an attractive solution to transmit medical data over light waves as a carrier. LiFi (light fidelity) is a bidirectional wireless system that transmits data via LEDs or infrared light. LEDs are much cheaper than LASER, making the FSO link cost-effective. LiFI does not interfere with the hospital equipment that relies on radio waves. LiFi is one of the future wireless communication technologies, which will help to develop next-generation hospitals with ultra-high-speed transmission. The overall objective of this research proposal is the development of Ultra Speed, resilient, cost-effective LiFi based Free Space Optical Communication to connect Hospitals Departments -clinics and home care patients for next generation Hospitals. However, fading due to atmospheric turbulence is the main problem affecting the FSO communication system performance. Therefore a case study on how the atmosphere around Malta affects light transmission in free space will be carried out to take measures to improve connectivity. After that the researcher will analyses developed FSO link performance on the ground considering different weather conditions(fog, haze, rain) of Malta and internal system parameters (Transmitter divergence angle, Receiver aperture diameter and link range on data rate, power received and SNR).