Development of Suprasensors and Assays for Molecular Diagnostics
SupraSense combines completely new strategies to design and realize biomimetic artificial receptors for bioactive small molecules, i.e. metabolites, with the aim of overcoming long-standing selectivity and sensitivity limitations...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
POROSENS
Highly Functional Porous Materials for Bio Diagnostic Sensor...
239K€
Cerrado
BioCapture
Smart capture phases for proteomics glycomics and biomarker...
3M€
Cerrado
PID2021-122457OB-I00
EXPLORANDO EL MICROBIOMA: DISPOSITIVOS ELECTROQUIMICOS DE BI...
182K€
Cerrado
TEC2016-78515-R
PLATAFORMAS NANOPLASMONICAS POINT-OF-CARE COMO SISTEMA INNOV...
212K€
Cerrado
NANHEMO
Nanobiosensors for Health Monitoring
30K€
Cerrado
PID2020-119087RB-I00
TEST RAPIDOS BASADOS EN NANOMATERIALES PARA DETERMINACION DE...
198K€
Cerrado
Información proyecto SupraSense
Duración del proyecto: 61 meses
Fecha Inicio: 2023-05-09
Fecha Fin: 2028-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
SupraSense combines completely new strategies to design and realize biomimetic artificial receptors for bioactive small molecules, i.e. metabolites, with the aim of overcoming long-standing selectivity and sensitivity limitations that hindered other synthetic sensory systems from reaching diagnostic applications. Sophisticated yet easy to fabricate SupraSensors will be developed based on unprecedented hybrid zeolitic materials whose binding cavities are modulated by peptide-based cofactors, thereby mimicking enzyme pockets. SupraSensors will be functional and directly applicable for molecular diagnostics in urine, saliva, and blood and will be of utility in point-of-care units and personal homes. Emphasis is given to the detection of metabolites that are important disease indicators.
I am an expert on conventional synthetic chemosensors and have studied both their merits and fundamental shortcomings. Out of this deep routed analysis, I developed the proposed ambitious strategy that marries principles of molecular recognition with materials science and chemistry-informed deep learning. These SupraSensors will advance the field through the following elements: i) high-energy water release from microporous materials ensures high binding affinity; ii) strategically placed peptide-based recognition elements provide selectivity while offering synthetic tunability; iii) information-rich signal output from SupraSensor libraries enables metabolite distinction in biofluids; iv) novel signal amplification concepts increase sensitivity. SupraSensor discovery will be fast and generalizable to many metabolite classes.
SupraSense has the potential to unleash supreme opportunities for multiparameter diagnostics, which will be essential for patient subgrouping based on metabolic phenotypes. The new concepts developed herein have the prospect to revolutionize early detection of emerging cardiovascular events, inflammations, sepsis, and other metabolic or aging-associated diseases.