Development of Reconstructed Electron Energy Loss techniques for Elemental Mappi...
Development of Reconstructed Electron Energy Loss techniques for Elemental Mapping in macromolecular structures
A perfect macromolecular structure would provide an all-atom description of the molecule, including not only the well-ordered polypeptide or polynucleotide framework but all other species: metals and other ions, cofactors, lipids,...
A perfect macromolecular structure would provide an all-atom description of the molecule, including not only the well-ordered polypeptide or polynucleotide framework but all other species: metals and other ions, cofactors, lipids, substrates and inhibitors. However, current structural data include no or very little information on elemental composition, leading to significant errors and omissions in atomic models. To address this issue, I propose to develop a method, Reconstructed Electron Energy Loss - Elemental Mapping (REEL-EM), that will map elemental distribution within macromolecular complexes by bringing together well-established principles in analytical electron microscopy (EM) and biological cryogenic EM.
Atomic-resolution elemental mapping in the electron microscope is well established for dose-tolerant samples. Electron Energy Loss (EEL) techniques capture information from inelastic scattering events in the sample, and energy losses are characteristic of the element and chemical state of the scattering atom. These techniques require a high electron dose to achieve useable signal-to-noise ratio, severely limiting their application to biological samples.
Our novel approach combines the image processing tools of single-particle cryo-EM with EEL techniques, allowing us to add EEL signal in the 3D particle space, effectively dividing the dose required for sensitive elemental analysis between many images. Preliminary work in my research group confirms that our proposed approach is valid - we are able to generate maps of specific elements in the 3D particle space. I propose to extend this early work to achieve single-atom detection at 1-nm spatial resolution in the course of this five-year project. Our work will characterise and optimise all aspects of data collection and processing for REEL-EM. We will apply our methodology to two important macromolecular complexes: the skeletal muscle ryanodine receptor and the mitochondrial F-type ATP synthase.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.