Innovating Works

FORGE

Financiado
Development of novel and cost effective coatings for high energy processing appl...
"The FORGE project has been specified as necessary by our energy-intensive industrial members, who, in order to intensify and update their future processes, need to improve equipment capability to withstand corrosion, erosion and... "The FORGE project has been specified as necessary by our energy-intensive industrial members, who, in order to intensify and update their future processes, need to improve equipment capability to withstand corrosion, erosion and brittle failures from gas collection and kiln operations, to maintain the equipment’s up-time and production efficiency. Current materials used in these exceptionally harsh environments, (and the corresponding design models) are not capable of robustly resisting degradation, leading to the constant need to inspect and repair damage. The FORGE project will train a machine-learning model to guide high-throughput experiments, to develop novel high performance coatings of targeted Compositionally Complex Alloys"" and Ceramic counterparts, to be applied to the key specified vulnerable process stages (eg CO2 capture and waste heat recovery pipework, heat exchangers, kiln refractories) in response to the specific degradation forces we find at each point. We will also capture the underlying principles of the material resistance, to proactively design the equipment for performance while minimising overall capex costs from these new alloys. The FORGE consortium has industrial user members from steel, cement, aluminium and ceramic industries and specialist materials, to ensure the project's focus on real-world issues, coupled with world-leading experience in the development of materials, protective coatings and their application to harsh environments. In addition to developing the new coating materials and techniques, we also aim to provide a new overarching set of design paradigms and generate an underpinning Knowledge Based System to inform this and future work in other energy intensive industries." ver más
31/10/2024
6M€
Duración del proyecto: 48 meses Fecha Inicio: 2020-10-02
Fecha Fin: 2024-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2024-10-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 6M€
Líder del proyecto
MBN NANOMATERIALIA SPA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5