Development of Functional Conjugated Two Dimensional Metal Organic Frameworks
Metal-organic frameworks (MOFs) have been highlighted for catalysis, gas storage and separation. However, due to low conductivity (<1E-8 S/cm), weak magnetic interaction as well as difficult device integration, the application of...
Metal-organic frameworks (MOFs) have been highlighted for catalysis, gas storage and separation. However, due to low conductivity (<1E-8 S/cm), weak magnetic interaction as well as difficult device integration, the application of bulk 3D MOFs in (spin-)electronics is challenging. Recent advances disclose that the designs of conjugated 2D MOFs (C2DMOFs) have led to improved intrinsic conductivity (up to 1000 S/cm). However, the related research remains immature due to lack of high-quality film samples, very limited structural types and elusive transport mechanism. In this project, we will develop unprecedented magnetic (semi-)conductive C2DMOFs and accomplish electronic/magnetic structure engineering for functions in electronics and spintronics. Here, we will synthesize novel conjugated monomers to tune geometries and pore sizes of C2DMOFs, thus achieving in-plane engineering on charge and spin distribution. We will develop versatile synthesis strategies towards highly crystalline C2DMOF films/nanosheets: (1) develop solvothermal synthesis and subsequent electrochemical exfoliation of layer-stacked bulk samples into 2D nanosheets; (2) develop air/liquid and liquid/liquid interfacial synthesis of large-area single-/few-layer films; (3) particularly establish a ground-breaking chemical vapor deposition (CVD) synthesis route for clean single-crystalline films. We will further establish unprecedented C2DMOF-based 2D-2D van der Waals heterostructures (vdWHs) with other inorganic 2D crystals to realize out-of-plane engineering on band gaps and unique interfacial transport characteristics. By employing the developed C2DMOFs and vdWHs, we will explore magnetism and temperature-/magnetic field-depended charge transport properties. As the key achievements, we expect to establish novel electronic/magnetic structures and general synthesis strategies, delineation of reliable structure-transport relationships and superior device performance of C2DMOFs.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.