Development of Electrochemical Reactors Using Dehydrogenases for Enantiopure Syn...
Development of Electrochemical Reactors Using Dehydrogenases for Enantiopure Synthon Preparations
The aim of the project is the development of electrochemical reactors for the manufacture of fine chemicals with dehydrogenases as a process with almost zero waste emission. The production of enantio pure compounds with high EE’s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2018-004752-P
Reactor catalítico automatizado y sistema analítico asociado
101K€
Cerrado
CTQ2014-52956-C3-3-R
PRODUCCION CATALITICA DE COMPUESTOS QUIMICOS Y DE INTERES EN...
221K€
Cerrado
PCI2018-092984
FABRICACION DE BIOCATALIZADORES HETEROGENEOS MULTIFUNCIONALE...
200K€
Cerrado
CTQ2016-78289-P
DESARROLLO DE PROCESOS CONTINUOS QUIMICO-ENZIMATICOS PARA VA...
224K€
Cerrado
CTQ2010-15568
INTEGRACION DE PROCESOS MEDIANTE DESARROLLO DE REACTORES PAR...
303K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of the project is the development of electrochemical reactors for the manufacture of fine chemicals with dehydrogenases as a process with almost zero waste emission. The production of enantio pure compounds with high EE’s can be achieved by using dehydrogenases as biocatalysts, because they express high enantio selectivity in ketone reduction, combined with broad substrate spectra by some of these enzymes. These proteins will be engineered for improved catalytic performance using the tools of molecular evolution, modelling, structure prediction, and crystallography. As these dehydrogenases typically require cosubstrate regeneration by aid of a second enzymatic reaction, we are looking for the alternative solution of an electrochemical approach for the regeneration of reduced cofactors. If all active compounds can be functionally immobilized on the electrode surface the constructed reactor would convert the educt in the input flow to the product in the output flow avoiding any contaminations. All necessary components like the mediator, the cofactor and the dehydrogenase will be bound to nano or meso structured electrodes (for increased active surface area) resulting in biofunctionalised surfaces with tailored properties at the nanoscale. Optimization of the electrode materials and surfaces, of the mediators and the required spacers as well as the surface bound dehydrogenase activities will result in electrochemical reactor moduls which can deliver enantio pure synthons for desired compounds in pharmaceutical or agrochemical applications. The obtained data will increase our knowledge on nanostructured catalysts and inorganic-organic hybrid systems. Cheap cofactor regeneration, easy product purification, high selectivity and avoidance of organic solvents will be the advantages of such processes to satisfy the demands of green chemistry in respect of environmentally friendly, flexible and energy efficient productions.