Development of an Auxetic antiMicrobial suPramolecular coordination poLymer as...
Development of an Auxetic antiMicrobial suPramolecular coordination poLymer as a meta materIal For bIomedical applications
AMPLIFI aims to develop an innovative auxetic, antimicrobial meta-material based on a supramolecular coordination polymer for the design of biomedical devices. Auxetics are unique due to their negative Poisson’s ratio, which impar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AMPLIFI
Duración del proyecto: 42 meses
Fecha Inicio: 2021-03-22
Fecha Fin: 2024-09-30
Líder del proyecto
UNIVERSITA TA MALTA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
222K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
AMPLIFI aims to develop an innovative auxetic, antimicrobial meta-material based on a supramolecular coordination polymer for the design of biomedical devices. Auxetics are unique due to their negative Poisson’s ratio, which imparts superior mechanical qualities when compared to conventional materials. They offer huge potential if used to design biomedical devices such as catheters. There is as yet no synthetic material that demonstrates auxeticity at the nano-level, even if potential auxeticity was demonstrated through simulations. Through AMPLIFI I will design a polymeric structure with superior mechanical strength that offers better patient comfort by virtue of its auxetic properties while also dealing with the challenge of bacterial infections. The project exploits the versatility of supramolecular chemistry of calixarenes or related macrocycles and self-assembly. Appropriate building blocks for a self-assembled auxetic polymer will be identified by MM simulations, and the effect of adding antimicrobial agents studied. The identified coordination polymer will be synthesized, fully characterised and subsequently tested for antimicrobial properties. I have a strong background in supramolecular chemistry which makes AMPLIFI an ideal project for me, and I will be joined by a strong supervisory team at the University of Malta consisting of an expert in auxetics, a renowned microbiologist and a structural chemist. AMPLIFI also boasts of the co-supervision of a leader in calixarene and related macrocyclic chemistry from the University of Parma. AMPLIFI builds on my expertise and enables me to work within a multidisciplinary team at the interface of theoretical chemistry, experimental organic synthesis and microbiology. In short, AMPLIFI provides me with a holistic research and training package to kick-start an independent research path and affords an unprecedented opportunity to contribute to the urgent plead for more comfortable and safer biomedical devices.