Development of a Novel Machine Learning-based model for Multiphase flows
Multiphase flow (MF) is the simultaneous flow of materials with two or more thermodynamic phases. MF occurs in numerous settings: bioengineering, conventional and nuclear power plants, oil and gas production and transport, pharmac...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTQ-15-07401
INTERACTSIM: Modelado de fluidos para aplicaciones interacti...
105K€
Cerrado
RYC-2010-06804
Multiscale modeling of complex fluids to predict macroscopic...
192K€
Cerrado
dataFlow
dataFlow A Data driven Fluid Flow Solving Platform
150K€
Cerrado
UPCA13-2E-2352
Sistema de Cálculo Científico para la Aceleración de Cálculo...
150K€
Cerrado
PRE2020-092575
UN METODO NUMERICO MULTI-ESCALA PARA FLUIDOS CON PARTICULAS
99K€
Cerrado
Información proyecto MLTI-PHASE
Duración del proyecto: 33 meses
Fecha Inicio: 2023-10-06
Fecha Fin: 2026-07-31
Líder del proyecto
UNIVERSITY OF LIMERICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
216K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Multiphase flow (MF) is the simultaneous flow of materials with two or more thermodynamic phases. MF occurs in numerous settings: bioengineering, conventional and nuclear power plants, oil and gas production and transport, pharmaceutical industry, combustion engines, chemical industry, flows inside the human body, biological industry, and process technology, to name a few. Researchers use experimental and theoretical techniques to study MF. Experimental techniques are usually restricted to smaller domains or laboratory scales due to very high costs; in addition, experiments in realistic conditions are very difficult to manage. On the other hand, theory usually requires numerical computation, which is very time-consuming for realistic MF problems.
The objective of this study is to develop a novel machine learning (ML)-based hidden fluid dynamics approach for MF. This innovative method combines ML and fluid dynamics by means of information accessible from photographs of flow visualizations and governing equations. The developed approach will considerably reduce the cost and time required to analyse MF systems. It will unlock many opportunities to improve the design and efficiency of existing and future MF systems, thus lowering design/operational costs.
This will be the first study to develop a ML-based model for MF. The novelty of the proposal is that it will open the opportunity to explore, via a relatively cheap and fast computation method, the vast number of design parameter variations normally needed for the optimisation of MF systems (e.g. efficiency, pressure drop, etc.). This contrasts with expensive and time-consuming experiments and time-inefficient parameter studies involving traditional computational fluid dynamics.
The proposal will be carried out in three stages:
1) To develop a ML-based model for MF.
2) To test the model with several benchmark MF problems.
3) To use the model to improve design and reduce cost in an actual practical environment.