Development of a Novel Machine Learning-based model for Multiphase flows
Multiphase flow (MF) is the simultaneous flow of materials with two or more thermodynamic phases. MF occurs in numerous settings: bioengineering, conventional and nuclear power plants, oil and gas production and transport, pharmac...
Multiphase flow (MF) is the simultaneous flow of materials with two or more thermodynamic phases. MF occurs in numerous settings: bioengineering, conventional and nuclear power plants, oil and gas production and transport, pharmaceutical industry, combustion engines, chemical industry, flows inside the human body, biological industry, and process technology, to name a few. Researchers use experimental and theoretical techniques to study MF. Experimental techniques are usually restricted to smaller domains or laboratory scales due to very high costs; in addition, experiments in realistic conditions are very difficult to manage. On the other hand, theory usually requires numerical computation, which is very time-consuming for realistic MF problems.
The objective of this study is to develop a novel machine learning (ML)-based hidden fluid dynamics approach for MF. This innovative method combines ML and fluid dynamics by means of information accessible from photographs of flow visualizations and governing equations. The developed approach will considerably reduce the cost and time required to analyse MF systems. It will unlock many opportunities to improve the design and efficiency of existing and future MF systems, thus lowering design/operational costs.
This will be the first study to develop a ML-based model for MF. The novelty of the proposal is that it will open the opportunity to explore, via a relatively cheap and fast computation method, the vast number of design parameter variations normally needed for the optimisation of MF systems (e.g. efficiency, pressure drop, etc.). This contrasts with expensive and time-consuming experiments and time-inefficient parameter studies involving traditional computational fluid dynamics.
The proposal will be carried out in three stages:
1) To develop a ML-based model for MF.
2) To test the model with several benchmark MF problems.
3) To use the model to improve design and reduce cost in an actual practical environment.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.