Development and evaluation of miniaturized biosensors for diagnosis of pathogens...
Development and evaluation of miniaturized biosensors for diagnosis of pathogens in aquaculture
The aquaculture industry is essential to meet the dietary needs of the growing world population and an important contributor to the European economy and to the people’s health and welfare. However, its expansion has been limited b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AQUASENSE
Duración del proyecto: 35 meses
Fecha Inicio: 2021-06-29
Fecha Fin: 2024-06-15
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aquaculture industry is essential to meet the dietary needs of the growing world population and an important contributor to the European economy and to the people’s health and welfare. However, its expansion has been limited by the great variety of diseases that affect farmed species and cause great economic losses. There is an urgent need to find new methodologies that allow cost-effective and early-detection that can be easily applied in decentralized settings or points-of-care. The main goal of AQUASENSE is the development of a new biosensor for early molecular diagnosis of aquaculture pathogens and to evaluate the use of third generation sequencing to monitor potential reservoirs of pathogens. To perform this, the turbot aquaculture will be used as a study case. A miniaturized device based on microscale solid phase extraction (µSPE) and microfluidics will be developed and optimized to perform universal highly efficient DNA extraction and purification from aquaculture samples. Then this system will be integrated with a novel biosensing module, based on isothermal amplification and CRISPR/Cas system, to develop a micro total analysis system (µTAS) suitable for resource-limited analysis. This device will be evaluated for the detection of two of the most problematic pathogens in turbot. In parallel, a miniaturized nanopore sequencer will be used to monitor the microbiome present in the samples and the potential reservoirs of pathogens, with the aid of the universal highly efficient DNA extraction device. This technology will allow more targeted treatments and reduce mortality and the use of antibiotics, improving the profitability of the sector. These objectives fit with important goals included in the Farm to Fork European Strategy (European Green Deal), such as reduce dependency on antimicrobials, improve the knowledge about microbiome and reach a more sustainable aquaculture production, all of them aimed at achieving a robust and resilient food system.