Development and commercialisation of a new purification system for contaminant f...
Development and commercialisation of a new purification system for contaminant free radiocarbon dating
The ERC-funded project ‘PalaeoChron’ is exploring the dispersal and chronology of early anatomically modern humans outwards from Africa and into Eurasia between 60-40,000 years ago. The study of this key period, during which Neand...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ChromaChron
Duración del proyecto: 29 meses
Fecha Inicio: 2018-06-18
Fecha Fin: 2020-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The ERC-funded project ‘PalaeoChron’ is exploring the dispersal and chronology of early anatomically modern humans outwards from Africa and into Eurasia between 60-40,000 years ago. The study of this key period, during which Neanderthals and other archaic humans disappeared to extinction, relies on the power of radiocarbon dating for the chronological framework underpinning it. There is a huge onus on reliable dating, but this is extremely challenging due to the overwhelming effects of even trace (~<1%) amounts of carbon contamination on archaeological bone samples. To overcome this, as part of the project, we have been using preparative liquid chromatography to isolate specific amino acids from bone collagen for radiocarbon dating. This has seen a dramatic improvement in our ability to decontaminate samples for dating, and obtain accurate results. The Oxford Radiocarbon Accelerator Unit (ORAU) is unique in the world in routinely using this approach for radiocarbon dating, but the current method does have some limitations despite the obvious advantages. The main limitation is the time required for the chromatography step; only one sample per day can be prepared. This Proof of Concept grant aims to develop a new chromatography solution to enable a higher throughput and a greater efficiency in the application of these purification techniques for collagen based samples. We have been working with our industrial partners in the development of the method and we want to bring a commercial product to market. Enabling this technology to be taken up by other laboratories will allow significant improvements to routine dating and geochemical analysis, thereby transforming our ability to provide a chronology for the human and environmental past.