Development and Application of Ultrafast Low-Energy Electron Microscopy
This proposal aims at the development and application of Ultrafast Low-Energy Electron Microscopy (ULEEM), a new experimental technique for studying dynamics at surfaces. It addresses a key question in ultrafast surface science, n...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-105488GB-I00
EXCITACIONES ELECTRONICAS Y DINAMICA EN SUPERFICIES Y NANOES...
195K€
Cerrado
USED
Ultrafast Spectroscopic Electron Diffraction USED of quant...
1M€
Cerrado
ATTOPIE
Attosecond plasmon imaging with electrons
186K€
Cerrado
RYC2020-030302-I
Advanced atomic force microscopy and 2D materials
324K€
Cerrado
ULEED
Observing structural dynamics at surfaces with Ultrafast Low...
1M€
Cerrado
RTI2018-099054-J-I00
VISUALIZACION DEL CAMPO ELECTRICO EN DISPOSITIVOS BASADOS EN...
145K€
Cerrado
Información proyecto ULEEM
Duración del proyecto: 63 meses
Fecha Inicio: 2022-05-06
Fecha Fin: 2027-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal aims at the development and application of Ultrafast Low-Energy Electron Microscopy (ULEEM), a new experimental technique for studying dynamics at surfaces. It addresses a key question in ultrafast surface science, namely the observation of rapid structural changes with high spatial and temporal resolution, and with ultimate surface sensitivity down to the monolayer level. In order to achieve this goal, a number of conceptual and technological challenges will need to be addressed.
This project is designed to support a comprehensive approach to the successful implementation of ULEEM. Pulsed electron source concepts and electron pulse compression schemes will be realized for the conditions of low-energy electron microscopy. Furthermore, tailored contrast mechanisms will be employed to enhance the time-resolved mapping of specific structural features and domains.
With this newly established methodology, we will study a selected set of model systems and nonequilibrium phenomena to explore ultrafast surface imaging of the dynamics and control of phase transformations, interlayer energy transfer in van der Waals heterostructures, and the excitation and propagation of collective modes.