Development and analysis of polymer based multi functional bactericidal material...
Development and analysis of polymer based multi functional bactericidal materials
90% of bacteria are found attached to solid surfaces forming structures (bio-films), that are inaccessible to drugs and antibiotics. These bio-films represent a major problem in European society in both industry and health care. C...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2016-78437-R
DISEÑO DE POLIMEROS ANTIMICROBIANOS PARA REDUCIR LAS INFECCI...
182K€
Cerrado
MAT2013-42473-R
DESARROLLO DE SISTEMAS AVANZADOS CON CAPACIDAD BACTERICIDA B...
220K€
Cerrado
MAT2015-67648-R
NANORECUBRIMIENTOS HIBRIDOS CON MEJORADA EFICIENCIA ANTIMICR...
121K€
Cerrado
MAT2013-47902-C2-1-R
MATERIALES POLIMERICOS ANTIMICROBIANOS PARA LA PREVENCION DE...
61K€
Cerrado
NOVO
Novel approaches for prevention and degeneration of pathogen...
4M€
Cerrado
RTI2018-096862-B-I00
RESPUESTA DE LAS PROPIEDADES ADHESIVAS DE PATOGENOS A LA LIB...
145K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
90% of bacteria are found attached to solid surfaces forming structures (bio-films), that are inaccessible to drugs and antibiotics. These bio-films represent a major problem in European society in both industry and health care. Currently, however, we understand little about how these bio-films form and, more importantly, how they can be prevented. This lack of understanding means that patients often suffer ‘unnecessary’ and painful infections following the formation of such films on surgical implants and catheters. With the growing problem of MRSA and C. difficile in hospitals, and the cost of policing and hygiene measures, an understanding of how to prevent bacterial persistence in the hospital environment is critical to the sustainability of European healthcare. A multi-disciplinary group of European experts have the common aim to understand exactly how bacteria attach to, and persist on both biological and inert surfaces. We will use a range of biological and physio-chemical techniques to study several fundamental aspects of bacterial attachment. We will employ new molecular microbiology techniques to understand the genetic components governing the interaction of a bacterial biotic cell surface with the novel antimicrobial surfaces we create. Second, we will be using new nano-scale material science and physical chemistry techniques to create and understand these antimicrobial surfaces. This duel systems approach will allow us to theoretically model the processes of bacterial attachment and survival, which in turn will allow us to improve these surfaces in an iterative approach. We will generate intellectual property around the coatings and treatments used to derive the surfaces and develop these in collaboration with industry. The solutions will be designed specifically for the industrial partners participating in the project but can, with a minimum effort be adapted for applications in other areas through the iterative steps within the WPs.