Determining the instructive tissue signals and the master transcription factors...
Determining the instructive tissue signals and the master transcription factors driving Kupffer cell differentiation
We have recently shown that contrary to common hypotheses, circulating monocytes can efficiently differentiate into Kupffer cells (KCs), the liver-resident macrophages. Using self-generated knock-in mice that allow specific KC dep...
We have recently shown that contrary to common hypotheses, circulating monocytes can efficiently differentiate into Kupffer cells (KCs), the liver-resident macrophages. Using self-generated knock-in mice that allow specific KC depletion, we found that monocytes colonize the KC niche in a single wave upon KC depletion and rapidly differentiate into self-maintaining KCs that are transcriptionally and functionally identical to their embryonic counterparts. This implies that: (i) access to the KC niche is tightly regulated, ensuring that monocytes do not differentiate into KCs when the KC niche is full but differentiate very efficiently into KCs upon temporary niche availability, and (ii) imprinting by the KC niche is the dominant factor conferring KC identity. Understanding which cells represent the macrophage niche, which signals produced by these cells imprint the tissue-specific macrophage gene expression profile and through which transcription factors (TxFs) this is mediated is emerging as the next challenge in the field. We here propose an original strategy combining state-of-the-art in silico approaches and unique in vivo transgenic mouse models to tackle this challenge specifically for KCs, the most abundant macrophage in the body. We hypothesize that the liver sinusoidal endothelial cell (LSEC) to which the KC is attached represents the most likely candidate to sense KC loss, recruit new monocytes and drive their differentiation into KCs. Thus, this proposal aims to: (I) determine the TxFs through which the niche imprints KC identity, (II) map the LSEC-KC crosstalk during KC development, (III) generate LSEC-specific knock-in mice to study LSECs in vivo, (IV) demonstrate which LSEC factors influence KC development and function. Importantly, understanding how the KC-TxFs and the LSEC-KC crosstalk control KC development and function will be essential for the development of novel therapeutic interventions for hepatic disorders in which KCs play a central role.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.