Detection of brain patterns for the characterisation of epileptic networks
This project will bring in a research fellow with significant experience in the development and application of signal processing tools applied to electromagnetic brain signal, to work with a group carrying out leading research in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEUROIMAGEEG
FAST AND HIGH FIDELITY EEG FORWARD SOLUTIONS FOR HIGH DEFINI...
100K€
Cerrado
FIS2010-18204
USO DEL ANALISIS NOLINEAL DE GRABACIONES ELECTROFISIOLOGICAS...
61K€
Cerrado
SLAB
Signal processing and Learning Applied to Brain data
1M€
Cerrado
NETEEG
Spatial super resolution of electrophysiological measurement...
150K€
Cerrado
EQC2018-004312-P
Adquisición de señales de electroencefalograma (EEGs) en rel...
111K€
Cerrado
Información proyecto EPINET
Duración del proyecto: 29 meses
Fecha Inicio: 2015-04-07
Fecha Fin: 2017-10-04
Líder del proyecto
ASTON UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
195K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will bring in a research fellow with significant experience in the development and application of signal processing tools applied to electromagnetic brain signal, to work with a group carrying out leading research in epilepsy and in the development of non-invasive tests to localise brain function in patients with drug-resistant epilepsy. EPINET research aims at developing and validating innovative methods to localise and characterise non-invasively functional properties of the epileptogenic zone (EZ), i.e. the area responsible for the generation of epileptic seizures. The candidate, L. Quitadamo (LQ), will bring to the team expertise in the classification of biological signal and computer programming developed through collaborations with world-leading teams involved in brain-computer interface (BCI) research, complementing the expertise of the host research group in non-invasive mapping of brain function. Furthermore, she will benefit from expert training in the analysis of neuroimaging and neurophysiological tests (Magnetoencephalography (MEG), High Resolution EEG (HR-EEG), spike-activated fMRI and Intracranial EEG). The benefit will be two-fold: The candidate will extend her expertise in signal processing to the clinical assessment of patients with drug-resistant epilepsy, developing new and complementary skills applied to specific clinical applications, which will enable her to reach a position of maturity and professional independence. The host group will have access to new methods of classification of bioelectrical signal and develop analysis tools that will be made available in the public domain together with a repository of multimodal electromagnetic signal obtained in the presurgical assessment of patients with epilepsy.