Detection and identification of nanoplastics in water via plasmonic-based spectr...
Detection and identification of nanoplastics in water via plasmonic-based spectrometric methods using evaporation-driven colloidal assembly
In recent years, we have discovered that our environment is extensively polluted with plastic particles in a wide range of sizes, from the largest pieces that we can identify with our bare eyes, to the so called microplastics (< 5...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CE4Plastics
Capillary electrophoresis as a main pillar for the character...
176K€
Cerrado
TED2021-131609B-C31
IDENTIFICACION Y RIESGO DE LOS NANOPLASTICOS EN AMBIENTES AC...
148K€
Cerrado
CTQ2009-14237-C02-01
ESPECIACION MULTIELEMENTAL QUIMICA Y FUNCIONAL EN NANOPARTIC...
127K€
Cerrado
CTQ2008-01329
DISEÑO DE ANALIZADORES DE CROMATOGRAFIA LIQUIDA CAPILAR Y NA...
119K€
Cerrado
CTQ2008-05821
NUEVOS NANOMATERIALES CON APLICACIONES INDUSTRIALES PARA EL...
59K€
Cerrado
Duración del proyecto: 21 meses
Fecha Inicio: 2022-10-31
Fecha Fin: 2024-07-31
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Descripción del proyecto
In recent years, we have discovered that our environment is extensively polluted with plastic particles in a wide range of sizes, from the largest pieces that we can identify with our bare eyes, to the so called microplastics (< 5 mm). As a consequence of the improvement in detection techniques, we now know that, for example, up to trillions of microplastic particles per litre have been found in plastic bottles for infants and in general plastic-based consumer water containers. Plastic debris above the microplastic cut-off can be sampled easily (though tediously) using standard extraction, collection, and purification methods. However, microplastics are typically heavily underestimated when using such basic techniques. In this project, I intend to develop a technique by which we can (1) concentrate diluted pre-filtered solutions by a controlled droplet evaporation process and (2) perform chemical identification of its content beyond the current detection limits using surface enhanced Raman spectroscopy. The technique will be easy, fairly cheap to implement and easily scalable for the identification of micro- and nanoplastics in consumer products.