Designing Stretchable Hydrogel Electrolytes and 2-Dimensional MXene Electrodes f...
Designing Stretchable Hydrogel Electrolytes and 2-Dimensional MXene Electrodes for Energy Harvesting via Ionic Thermoelectrics
Recently, energy harvesting technologies based on the concept of thermoelectricity with direct conversion of waste heat into electricity has received great attention. Thermoelectric (TE) devices have already been used in various i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto HITEH
Duración del proyecto: 25 meses
Fecha Inicio: 2022-07-12
Fecha Fin: 2024-08-31
Líder del proyecto
LINKOPINGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Recently, energy harvesting technologies based on the concept of thermoelectricity with direct conversion of waste heat into electricity has received great attention. Thermoelectric (TE) devices have already been used in various industries such as combustion engines, coupled to photovoltaic cells, and to power small home appliances. Conventional TE devices based on electronic conducting materials working through the thermo-diffusion of electrons and holes have been intensively studied and achieved significant performance innovations; however, the small electronic Seebeck coefficient (~100 µV K-1) limits their practical applications. At the same time, these devices cease to work as temperature difference diminishes and are not capable of storing charge. Most of them are based on hard inorganic materials with no/limited flexibility and are not applicable in wearable applications. Therefore, it is necessary to develop new electrolytes with a high Seebeck coefficient and large surface electrodes for high charge storage capability to solve these issues.
In this project, we propose the development of stretchable hydrogel electrolytes and 2-Dimensional (2D) MXene electrodes. The proposal consists of 1) design and synthesis of the stretchable hydrogel electrolytes that exhibit intrinsic stretchability (> 300 %) and humidity-independent high ionic Seebeck coefficient (> 50 mV K-1), 2) realizing 2D MXene electrodes capable of high capacitance (> 500 F/g), 3) fabricating energy harvesting and sensing devices based on ionic thermoelectric.
This project will give an opportunity for the researcher to gain state-of-the-art knowledge on ionic thermoelectric materials and devices. The experience of the supervisor in various thermoelectric generators will also be fully exploited through this project. Our proposal will contribute to materials science, particularly in energy harvesting society, polymer electrolytes, and 2 dimensional MXene materials.