dEsign enVironmEnt foR Extreme Scale big data analytics on heterogeneous platfor...
dEsign enVironmEnt foR Extreme Scale big data analytics on heterogeneous platforms
The distributed and heterogeneous nature of the data sources in High Performance Big Data Analytics (HPDA) applications, as well as the required computational power, is pushing designers towards novel computing systems that combin...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2018-005084-P
Adquisición de Infraestructura de Computación Científica de...
191K€
Cerrado
EQC2019-006526-P
Sistema HPC orientado a procesamiento masivo - Big Data Clús...
204K€
Cerrado
Dicode
Mastering Data Intensive Collaboration and Decision Making
4M€
Cerrado
PID2020-113614RB-C21
COMPUTACION AVANZADA PARA LOS RETOS DE LA SOCIEDAD DIGITAL-U...
358K€
Cerrado
EXA4MIND
EXtreme Analytics for MINing Data spaces
5M€
Cerrado
ACTIVITY EXCHANGE
A data streaming platform to empower companies with intellig...
71K€
Cerrado
Información proyecto EVEREST
Duración del proyecto: 44 meses
Fecha Inicio: 2020-07-31
Fecha Fin: 2024-03-31
Líder del proyecto
IBM RESEARCH GMBH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
5M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The distributed and heterogeneous nature of the data sources in High Performance Big Data Analytics (HPDA) applications, as well as the required computational power, is pushing designers towards novel computing systems that combine HPC, Cloud, and IoT solutions (for efficient and distributed computation closer to the data) with Artificial Intelligence (AI) algorithms (for knowledge extraction and decision making).
In this context, the EVEREST project addresses the matching problem between application (and data) requirements, and the characteristics of the underlying heterogeneous hardware. Only an optimal match leads to efficient computation. In particular, we forecast that the creation of future Big Data systems will be of course data-driven, but also featuring complex heterogeneous and reconfigurable architectures that must be redesigned or customized based on the nature and locality of the data, and the type of learning/decisions to be performed.
The EVEREST project aims at developing a holistic approach for co-designing computation and communication in a heterogeneous, distributed, scalable and secure system for HPDA. This is achieved by simplifying the programmability of heterogeneous and distributed architectures through a data-driven design approach, the use of hardware-accelerated AI, and through an efficient monitoring of the execution with a unified hardware/software paradigm. EVEREST proposes a design environment that combines state-of-the-art, stable programming models, and emerging communication standards, with novel and dedicated domain-specific extensions.
Three industry-relevant application scenarios are used to validate the EVEREST approach and act as business cases for the project exploitation: (i) a weather analysis-based prediction model for the renewable energy trading market, (ii) an application for air-quality monitoring of industrial sites, and (iii) a real-time traffic modeling framework for intelligent transportation in smart cities.