Design, characterization, and evaluation of biofilm eradicating hybrid liquid cr...
Design, characterization, and evaluation of biofilm eradicating hybrid liquid crystalline nano-coatings for new 3D porous orthopedic implants
Orthopedic implant-associated biofilm infections represent a major public health and socioeconomic burden due the intrinsic tolerance of biofilms that behave as protective and immobile scaffolds to conventional antibiotics and imm...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2013-48224-C2-1-R
DISEÑO DE SUPERFICIES MULTIFUNCIONALES DE ALEACIONES DE TITA...
172K€
Cerrado
BAMBBI
Bio-inspired AntiMicrobial Bone BIoceramics: Deciphering con...
2M€
Cerrado
PCIN-2016-123
DESARROLLO DE SUPERFICIES HIBRIDAS BIOFUNCIONALIZADAS Y RESI...
90K€
Cerrado
DPI2017-90058-R
SUPERFICIES NANOESTRUCTURADAS BIOFUNCIONALES COMO NUEVA GENE...
177K€
Cerrado
PID2020-117091RB-I00
BIOCERAMICAS NANOESTRUCTURADAS CON APLICACIONES EN INFECCION...
125K€
Cerrado
MAT2013-48224-C2-2-R
DISEÑO DE SUPERFICIES MULTIFUNCIONALES DE ALEACIONES DE TITA...
138K€
Cerrado
Información proyecto LC-NanoCoat
Duración del proyecto: 27 meses
Fecha Inicio: 2023-04-11
Fecha Fin: 2025-08-06
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
215K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Orthopedic implant-associated biofilm infections represent a major public health and socioeconomic burden due the intrinsic tolerance of biofilms that behave as protective and immobile scaffolds to conventional antibiotics and immune system. Further, their long-term and repeated antibiotic treatments lead to an increased potential of antibiotic resistance development. Here, this interdisciplinary proposed project integrates innovative aspects of surface chemistry, 3D morphological characterization of coated implants, and precision engineering with attributes for production of much needed biofilm-targeting nanostructural implant coatings. It also considers the urgent societal needs for introducing an effective, flexible, and universal approach in orthopedic implant patterning and functionalization for combatting and preventing implant-associated biofilms. This core approach is based on controlled patterning with inverse non-lamellar lyotropic liquid crystalline phases having unique nanostructural versatility through prior precision priming of new 3D porous implant surfaces with tailor-made coating method, and their thorough characterization by using different modalities including GISAXS, neutron reflection, high-resolution X-ray photoelectron spectroscopy, and X-ray micro-computed tomography. This is in combination with in vitro profiling on model implant-associated biofilm infections. The project provides an environment with independent research activities for building my professional skills in a research topic at the interface of nanoscience, surface chemistry, and experimental medicine. In addition to training at different synchrotron facilities, my research career will be certainly advanced owing to the gained experience with state-of-art biophysical tools and supervision of Master students.