Innovating Works

LC-NanoCoat

Financiado
Design, characterization, and evaluation of biofilm eradicating hybrid liquid cr...
Design, characterization, and evaluation of biofilm eradicating hybrid liquid crystalline nano-coatings for new 3D porous orthopedic implants Orthopedic implant-associated biofilm infections represent a major public health and socioeconomic burden due the intrinsic tolerance of biofilms that behave as protective and immobile scaffolds to conventional antibiotics and imm... Orthopedic implant-associated biofilm infections represent a major public health and socioeconomic burden due the intrinsic tolerance of biofilms that behave as protective and immobile scaffolds to conventional antibiotics and immune system. Further, their long-term and repeated antibiotic treatments lead to an increased potential of antibiotic resistance development. Here, this interdisciplinary proposed project integrates innovative aspects of surface chemistry, 3D morphological characterization of coated implants, and precision engineering with attributes for production of much needed biofilm-targeting nanostructural implant coatings. It also considers the urgent societal needs for introducing an effective, flexible, and universal approach in orthopedic implant patterning and functionalization for combatting and preventing implant-associated biofilms. This core approach is based on controlled patterning with inverse non-lamellar lyotropic liquid crystalline phases having unique nanostructural versatility through prior precision priming of new 3D porous implant surfaces with tailor-made coating method, and their thorough characterization by using different modalities including GISAXS, neutron reflection, high-resolution X-ray photoelectron spectroscopy, and X-ray micro-computed tomography. This is in combination with in vitro profiling on model implant-associated biofilm infections. The project provides an environment with independent research activities for building my professional skills in a research topic at the interface of nanoscience, surface chemistry, and experimental medicine. In addition to training at different synchrotron facilities, my research career will be certainly advanced owing to the gained experience with state-of-art biophysical tools and supervision of Master students. ver más
06/08/2025
215K€
Duración del proyecto: 27 meses Fecha Inicio: 2023-04-11
Fecha Fin: 2025-08-06

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-11
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 215K€
Líder del proyecto
KOBENHAVNS UNIVERSITET No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5