Design and NanoEngineering of Microporous Membranes for Energy Storage
With the rapid development of renewable energy such as solar and wind power, energy storage technologies are in urgent need to integrate the low carbon energy into the power grid. Redox flow batteries are promising for grid scale...
With the rapid development of renewable energy such as solar and wind power, energy storage technologies are in urgent need to integrate the low carbon energy into the power grid. Redox flow batteries are promising for grid scale energy storage owing to their scalable storage capacity, decoupled power and energy, long-term cycle performance, and quick response time. Membrane separators play a crucial role in flow batteries by selectively transporting ions while preventing the crossover of redox-active materials. Commercial Nafion membranes are being widely used for flow batteries, however, their high costs limit the large-scale application of this promising technology. Next-generation low-cost membranes with high ionic conductivity and selectivity, and durability are desirable for flow battery energy storage. This proposal NanoMMES aims at designing and nanoengineering low-cost, high-performance, ion-selective microporous membranes for redox flow battery energy storage applications. The objectives of NanoMMES will be achieved through curiosity-driven research into (1) designing the structures of microporous polymers to precisely tune the pore size and ion-conducting functionality required for batteries with different redox chemistries; (2) processing and nanoengineering polymers into highly conductive and selective membranes, and understanding the mechanisms of transport of ions and redox materials; (3) combining the designer membranes with redox flow battery chemistries to achieve efficient and stable energy storage. NanoMMES will undertake interdisciplinary research combining the molecular design of microporous polymers, membrane science and engineering, and redox flow battery chemistry and technology. The ultimate goal of the project is to generate design principles for next-generation ion-selective membranes that will have broad implications on advanced batteries for energy storage, helping the EU develop renewable energy and reduce greenhouse gas emissions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.