We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GWT
Gromov Witten Theory Mirror Symmetry Modular Forms and In...
620K€
Cerrado
OPENGWTRIANGLE
Three ideas in open Gromov Witten theory
1M€
Cerrado
MSAG
Mirror symmetry in Algebraic Geometry
2M€
Cerrado
MTM2016-79400-P
SIMETRIAS EN GEOMETRIA ARITMETICA, ALGEBRAICA Y SIMPLECTICA
75K€
Cerrado
MTM2011-28326-C02-01
ESTRUCTURAS GEOMETRICAS ESPECIALES SOBRE VARIEDADES Y APLICA...
36K€
Cerrado
MTM2014-54804-P
GEOMETRIAS ESPECIALES Y PROBLEMAS VARIACIONALES GEOMETRICOS
44K€
Cerrado
Información proyecto DerSympApp
Duración del proyecto: 73 meses
Fecha Inicio: 2018-01-25
Fecha Fin: 2024-02-29
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lurie.
On the foundational side, we will introduce the new notion of shifted symplectic groupoids and prove that they provide an alternative approach to shifted Poisson structures (as they were defined by the PI together with Tony Pantev, Bertrand Toën, Michel Vaquié and Gabriele Vezzosi). Along the way, we shall be able to prove several conjectures that have recently been formulated by the PI and other people.
Applications are related to mathematical physics. For instance:
- we will provide an interpretation of the Batalin–Vilkovisky formalism in terms of derived symplectic reduction.
- we will show that the semi-classical topological field theories with values in derived Lagrangian correspondences that were previously introduced by the PI are actually fully extended topological field theories in the sense of Baez–Dolan and Lurie.
- we will explain how one may use this formalism to rigorously construct a 2D topological field theory that has been discovered by Moore and Tachikawa.
Quantization problems will also be discussed at the end of the proposal.
This project proposal lies at the crossroads of algebraic geometry, mathematical physics (in its algebraic and geometric aspects) and higher algebra.