We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lu...
We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lurie.
On the foundational side, we will introduce the new notion of shifted symplectic groupoids and prove that they provide an alternative approach to shifted Poisson structures (as they were defined by the PI together with Tony Pantev, Bertrand Toën, Michel Vaquié and Gabriele Vezzosi). Along the way, we shall be able to prove several conjectures that have recently been formulated by the PI and other people.
Applications are related to mathematical physics. For instance:
- we will provide an interpretation of the Batalin–Vilkovisky formalism in terms of derived symplectic reduction.
- we will show that the semi-classical topological field theories with values in derived Lagrangian correspondences that were previously introduced by the PI are actually fully extended topological field theories in the sense of Baez–Dolan and Lurie.
- we will explain how one may use this formalism to rigorously construct a 2D topological field theory that has been discovered by Moore and Tachikawa.
Quantization problems will also be discussed at the end of the proposal.
This project proposal lies at the crossroads of algebraic geometry, mathematical physics (in its algebraic and geometric aspects) and higher algebra.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.