Defining mechanisms of cellular stress responses driven by heterotypic ubiquitin...
Posttranslational modification of proteins with monoubiquitin or different polyubiquitin chains alter protein function to signal distinct responses in cells and thereby regulate every aspect of eukaryotic biology. Recently, ubiqui...
Posttranslational modification of proteins with monoubiquitin or different polyubiquitin chains alter protein function to signal distinct responses in cells and thereby regulate every aspect of eukaryotic biology. Recently, ubiquitin has also been reported to form branched heterotypic chains. The central premise of this proposal is that branched ubiquitin chains adopt unique conformations and convey distinct intracellular signals essential for maintaining cellular homeostasis. We posit that branching of homotypic ubiquitin chains or de novo formation of branched structures occurs in response to specific cues and they serve as priority signals to mediate prompt cellular responses. The complex nature of branched heterotypic ubiquitin, the lack of tools to specifically and efficiently probe different branched ubiquitin structures and the relatively low abundance of these chains in a cell make it challenging to study them. In this proposal, I will describe an ambitious approach to define how branched ubiquitin serve as unique signals to elicit cellular stress responses. To attain these goals, we will pioneer the development of novel designer tools and methods, which we will combine with quantitative proteomics, single cell analyses, biochemistry and structural biology. We will elucidate the molecular players involved in the assembly, decoding and regulation of branched ubiquitin. We will develop approaches to monitor branched ubiquitin formation in cells to identify stress conditions that trigger formation of branched ubiquitin chains. We will functionally characterize how distinct branched heterotypic ubiquitin signals are formed in response to stress and serve as priority signals to trigger stress-response pathways. Our work will shed light on fundamental principles of intracellular signalling and mechanisms that maintain cellular homeostasis.ver más
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.