Deep learning enhanced numerical simulations of mixed dimensional models for sub...
Deep learning enhanced numerical simulations of mixed dimensional models for subsurface flow
Exploiting the subsurface as an energy storage site is a crucial step to meet some of the challenges arising from energy production by renewable sources. For such applications, a proper understanding of the subsurface flow is esse...
Exploiting the subsurface as an energy storage site is a crucial step to meet some of the challenges arising from energy production by renewable sources. For such applications, a proper understanding of the subsurface flow is essential and calls for efficient and effective computational models. The main difficulties in the mathematical modeling arise from the highly varying material parameters as well as the presence of fracture networks, the latter aspect being crucial due to its leading impact on flow characteristics. These features are a leading source of computational complexity, often making it infeasible to use full order simulation models in real-life situations, particularly when there is the need to investigate different scenarios and/or quantify uncertainties.
In this project, I will build on my acquired expertise in mixed-dimensional models of fractured porous media, where fractures are represented as a collection of immersed, lower-dimensional manifolds. Although these models lead to accurate numerical methods, the computational cost remains impractically high. To overcome this, I propose to develop reduced order models for mixed-dimensional flow problems. In particular, I will investigate how to properly capture non-linear dependencies on model parameters such as the fracture network configuration by extending and adapting the deep learning enhanced reduced order modeling techniques recently investigated by researchers of the host institution.
The combination of research fields is reflected by the composition of the project: the proponent has a strong theoretical background in analyzing and discretizing mixed-dimensional models whereas the supervisor and associated host institute are leading experts in fractured porous media flow and application-driven reduced order modeling. Additionally, the host institution offers the necessary research and complementary skill training for the proponent to further develop and thrive as an independent researcher.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.