Deep ice - Deep learning. Artificial intelligence revealing the oldest ice clima...
We are missing a central piece in the puzzle to understanding our Earth’s climate: Its dynamics fundamentally changed during the “Mid-Pleistocene Transition”, when some 1.2 million years ago the oscillation between warm periods an...
We are missing a central piece in the puzzle to understanding our Earth’s climate: Its dynamics fundamentally changed during the “Mid-Pleistocene Transition”, when some 1.2 million years ago the oscillation between warm periods and ice ages shifted its periodicity from 41 to 100 ka. A key set of information about this change was archived in the snow that fell at that time in Antarctica. At unique locations, that snow is still preserved today in the deepest ice layers– but does it still contain its original message? AiCE will answer this key question specifically using chemical impurity signals which make up a large part of the ice core record about past atmospheric conditions. For this purpose, we take a new approach to study the oldest and highly thinned layers at unprecedented detail. While conventional meltwater analysis delivers 1D cm-resolution signals, we go into 2D by imaging the chemical impurity distribution at micro-metric scale in the solid ice core. This way, we can retrieve crucial information that is inevitably lost by melting: The same ice matrix preserving the climatic record can act on it and ultimately destroy it through various processes, causing impurities to relocate away from their original layer. Hence, the goal is to identify the original layering, by detecting post-depositional change through analyzing highly-dimensional chemical images. However, human observers have clear limitations in detecting all the important details in such complex visual datasets. This is why AiCE will add deep learning to deep ice: Artificial intelligence (Ai) image analysis will be established through a comprehensive understanding of the chemical image features and their connection to post-depositional processes. With this, we can address the fundamental climate questions through deciphering deep ice – in Antarctica and elsewhere. Ultimately, AiCE could revolutionize how we interpret the oldest paleoclimate signals in ice cores and other archives.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.