Decouple Electrochemical Reduction of Carbon Dioxide to High Value Products
This programme aims to convert carbon dioxide into high value hydrocarbon products using carbon neutral electrochemical methods. High value products are materials that may be used as carbon based chemical feedstocks and as synthet...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DeCO-HVP
Duración del proyecto: 81 meses
Fecha Inicio: 2018-09-13
Fecha Fin: 2025-06-30
Líder del proyecto
UNIVERSITY OF LANCASTER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This programme aims to convert carbon dioxide into high value hydrocarbon products using carbon neutral electrochemical methods. High value products are materials that may be used as carbon based chemical feedstocks and as synthetic fuels, reducing the ever-present demand on oil and natural gas to fulfil these needs. The project is within the remit of an international ambition to valorise carbon dioxide waste and reduce environmentally harmful greenhouse gas generation, as opposed to stopping at carbon capture and sequestration. This proposal outlines an alternative route to carbon dioxide utilisation (CDU), in which a mediated approach that decouples the electrochemical reduction from the catalytic process is explored. Novel bimetallic catalysts will be synthesised and studied, meditating electron donating solutions will be generated, and a robust and comprehensive analytical arrangement will be implemented to allow total identification and quantification of the wide range of possible products.
Electrocatalytic CO2 reduction is one of the key approaches to CDU, as it has a direct pathway to carbon neutral renewable electricity. Nonetheless it is a field that has shown minimal progress in the past 30 years. A paradigm shift is necessary in the approach to electrochemical CO2 reduction, where conventional heterogeneous interfacial catalysis is limited by mass transport, passivation, and CO2 solubility. This proposal outlines the use of electron donating mediators generated separately to the catalysed chemical reduction of CO2, such that the electrolyte becomes the electrode. This opens a whole new avenue for catalyst research, and here target bimetallic catalysts that suppress side reactions and promote high value product synthesis are described.