DeConstruct Stars: revealing the enigmatic mixing process in the radiative-conve...
DeConstruct Stars: revealing the enigmatic mixing process in the radiative-convective boundary of stars using cutting-edge 3D numerical simulations
Stars like our Sun are complex systems in which hydrogen fusion occurs in the radiative core, and heat is transported by convection in the outer part. The two most important regions in Sun-like stars are the optical surface and th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAGMIST
From the magnetized diffuse interstellar medium to the stars
1M€
Cerrado
new-ppd-environments
First principles global MHD disc simulations Defining plane...
1M€
Cerrado
STARS2
Simulations of Turbulent Active and Rotating Suns and Stars
880K€
Cerrado
ExCEED
Explaining Common Envelope Evolution and Dynamics in binary...
3M€
Cerrado
COCO2CASA
Modeling Stellar Collapse and Explosion Evolving Progenitor...
3M€
Cerrado
Información proyecto DCStars
Duración del proyecto: 35 meses
Fecha Inicio: 2024-04-08
Fecha Fin: 2027-03-31
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
227K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Stars like our Sun are complex systems in which hydrogen fusion occurs in the radiative core, and heat is transported by convection in the outer part. The two most important regions in Sun-like stars are the optical surface and the transition region between the radiative core and the convective envelop, called the tachocline. The tachocline, which is believed to be responsible for generating stellar global magnetic fields (also related to the 11-year solar cycle), is a complicated region where the effect of rotation, magnetic field, diffusion of elements, and convective overshoot interplays. In this project, we will carry out global convection simulations that range from radiative interior to the lower atmosphere for the Sun and a few F-type stars using the state-of-the-art DISPATCH code. Our ab initio simulations will include complex physical processes such as rotation and magnetic fields and are free from approximations typically adopted in previous works. Based on these simulations, the applicant will quantitively study the problem of overshooting and gravity wave excitation near the tachocline, which are crucial for a better understanding of the solar modeling problem, the anomalous abundance of lithium in the Sun, and the cosmological lithium problem.