Life originally emerged and flourished in hydrogen sulfide (H2S)-rich environment and literature published in the past decade started to recognize that H2S is a mediator of many physiological and pathological processes. Exposure t...
Life originally emerged and flourished in hydrogen sulfide (H2S)-rich environment and literature published in the past decade started to recognize that H2S is a mediator of many physiological and pathological processes. Exposure to H2S can put animals into suspended animation-like state while the lifespan extensions by the dietary restriction are caused by H2S accumulation. Disturbances in its production are linked to the development of neurodegenerative diseases and cancer, among many others. A new post-translational modification (PTM) of cysteine residues called protein persulfidation (i.e., converting cysteine residues PSH to persulfides, PSSH) has been suggested as a unifying mechanism behind all these effects. Therefore, an understanding of protein persulfidation has not only a fundamental potential, e.g. unraveling new signaling pathways, but also a pharmacological potential in fighting aging and diseases. However, the underlying mechanisms of H2S-mediated PSSH formation are still unclear, mainly due to the lack of a reliable and selective methodology for PSSH labeling. Here, using cutting-edge methodology for PSSH labeling developed by our team, combined with proteomics, metabolomics and molecular biology, and by working on different model systems (cells, C. elegans, rodents) we intend to (i) gain high-resolution structural, functional, quantitative, and spatio-temporal information on PSSH dynamics and position this evolutionary conserved PTM in the global cell signalling scheme, particularly in relation to other cysteine PTMs, (ii) understand the intricate relation between aging and PSSH and (iii) identify the protein targets whose change of function by persulfidation is implicated in aging and disease progression. The ultimate objective is to pave the way for the development of innovative therapeutic strategies that will permit targeted redox control of cell metabolism, and delay aging and disease progression.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.