Decoding Dark Matter with Stellar Streams from Beyond the Milky Way
One of the key questions driving astrophysics research today is the nature of dark matter, which comprises 80% of the matter in the Universe. Stellar streams are sensitive to the distribution of dark matter and to the population o...
One of the key questions driving astrophysics research today is the nature of dark matter, which comprises 80% of the matter in the Universe. Stellar streams are sensitive to the distribution of dark matter and to the population of dark matter subhalos in galaxies, both of which depend on the mass and interactions of the dark matter particle. My proposed work will use the wealth of incoming stellar stream data materializing over the next five years from the Nancy Grace Roman Space Telescope, the Vera C. Rubin Observatory, and the Euclid Space Telescope to measure dark matter halo masses, shapes and concentrations, as well as subhalo populations of external galaxies. I will lead a fundamental shift in the approach to stellar stream studies through statistical model-to-data comparisons between theoretical predictions from various dark matter candidates (cold, warm, wave-like, self-interacting) and the actual stream data. To achieve this goal, I will develop novel numerical techniques which model and fit multiple streams at once in multiple external galaxies, run state-of-the-art N-body simulations of disrupting globular clusters in dwarf galaxies to place theoretical constraints on the expected substructure, and carry out statistical comparisons between dark matter models and properties derived from the stellar stream data. I will rule out dark matter candidates that are inconsistent with the new stellar stream data, and by the end of the 60-month grant period, I will have the world-leading constraints on dark matter from stellar streams. This work provides an innovative method for mapping the otherwise invisible dark matter, and will constrain statistical properties of dark matter related to its nature and possible extensions of the standard model of particle physics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.