Decoding Dark Matter with Stellar Streams from Beyond the Milky Way
One of the key questions driving astrophysics research today is the nature of dark matter, which comprises 80% of the matter in the Universe. Stellar streams are sensitive to the distribution of dark matter and to the population o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EXTRADARK
Extragalactic stellar streams as astrophysical tools to deci...
231K€
Cerrado
UNICALS
UNIfied Cosmology Across Lensing Surveys
Cerrado
VIA LACTEA
Numerical Simulations of the Milky Way s Accretion History
1M€
Cerrado
GLENCO
Gravitational Lensing as a Cosmological Probe
2M€
Cerrado
CosmicExplorer
Exploring the Cosmos with the Vera Rubin Observatory
2M€
Cerrado
Duración del proyecto: 61 meses
Fecha Inicio: 2024-04-09
Fecha Fin: 2029-05-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
One of the key questions driving astrophysics research today is the nature of dark matter, which comprises 80% of the matter in the Universe. Stellar streams are sensitive to the distribution of dark matter and to the population of dark matter subhalos in galaxies, both of which depend on the mass and interactions of the dark matter particle. My proposed work will use the wealth of incoming stellar stream data materializing over the next five years from the Nancy Grace Roman Space Telescope, the Vera C. Rubin Observatory, and the Euclid Space Telescope to measure dark matter halo masses, shapes and concentrations, as well as subhalo populations of external galaxies. I will lead a fundamental shift in the approach to stellar stream studies through statistical model-to-data comparisons between theoretical predictions from various dark matter candidates (cold, warm, wave-like, self-interacting) and the actual stream data. To achieve this goal, I will develop novel numerical techniques which model and fit multiple streams at once in multiple external galaxies, run state-of-the-art N-body simulations of disrupting globular clusters in dwarf galaxies to place theoretical constraints on the expected substructure, and carry out statistical comparisons between dark matter models and properties derived from the stellar stream data. I will rule out dark matter candidates that are inconsistent with the new stellar stream data, and by the end of the 60-month grant period, I will have the world-leading constraints on dark matter from stellar streams. This work provides an innovative method for mapping the otherwise invisible dark matter, and will constrain statistical properties of dark matter related to its nature and possible extensions of the standard model of particle physics.