Decoding Context Dependent Genetic Networks in vivo
The evolutionary success of multicellular organisms is based on the division of labor between cells. While some of the molecular determinants for cell fate specification have been identified, a fundamental understanding of which g...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2008-04251
ANALISIS GENOMICOS DE LA RED REGULADORA DEL DESARROLLO FLORA...
169K€
Cerrado
BFU2014-58289-P
ANALISIS GENOMICOS, PROTEOMICOS Y GENETICOS DE LA RED REGULA...
230K€
Cerrado
DeepGenetics
Deep genetics to study and uncover ‘hidden’ biology
2M€
Cerrado
BES-2012-053274
ANALISIS GENOMICOS Y GENETICOS DE LA RED REGULADORA DEL DESA...
43K€
Cerrado
BFU2011-22734
ANALISIS GENOMICOS Y GENETICOS DE LA RED REGULADORA DEL DESA...
288K€
Cerrado
BIO2009-11407
ANALISIS DE GENES Y PROGRAMAS DE DESARROLLO IMPLICADOS EN LA...
200K€
Cerrado
Información proyecto DECODE
Duración del proyecto: 74 meses
Fecha Inicio: 2019-04-06
Fecha Fin: 2025-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The evolutionary success of multicellular organisms is based on the division of labor between cells. While some of the molecular determinants for cell fate specification have been identified, a fundamental understanding of which genetic activities are required in each cell of a developing tissue is still outstanding. The DECODE project will develop and apply leading-edge system genetics methods to Arabidopsis and Drosophila, two major model systems from the plant and animal kingdoms to decode context-dependent genetic networks in vivo. To achieve this, DECODE will bring together experimental and theoretical groups with complementary expertise in model organism genetics and cellular phenotyping, single-cell genomics, statistics and computational biology. Building on our combined expertise, we will create functional genetic maps using conditional CRISPR/Cas9-based single- and higher order knockout perturbations in vivo combined with single-cell expression profiling and imaging. Coupled with powerful computational analysis, this project will not only define, predict and rigorously test the unique genetic repertoire of each cell, but also unravel how genetic networks adapt their topology and function across cell types and external stimuli. With more than thousand conditional knockouts, characterized by several million single-cell transcriptome profiles and high-resolution imaging this project will create the largest single-cell perturbation map in any model organism and will provide fundamental insights into the genetic architecture of complex tissues. Analyzing two tissues with divergent organization and regulatory repertoire will enable us to uncover general principles in the genetic circuits controlling context
dependent cell behavior. Consequently, we expect that the DECODE project in model organisms will lay the conceptual and methodological foundation for perturbation-based functional atlases in other tissues or species.