The genome of an animal encodes a large set of regulatory programs that give rise to the thousands of cell types that make up its tissues and organs. Despite recent progress in single-cell omics, our knowledge about the regulatory...
The genome of an animal encodes a large set of regulatory programs that give rise to the thousands of cell types that make up its tissues and organs. Despite recent progress in single-cell omics, our knowledge about the regulatory programs that control the establishment and maintenance of cell type identity remains limited, and methods are lacking to infer regulatory programs directly from the genome sequence. In this project, which lies at the interface between the genome and single-cell atlases, we ask how the genome sequence translates into cell types. We start with Drosophila as model organism. Its compactness allows sampling of all its cell types and developmental trajectories from egg to adult, using whole-organism single-cell multi-omics, thus capturing the spectrum of activation states that emerge from the regulatory genome. Deep learning models will be trained on regulatory sequences to predict and explain gene regulatory networks (GRN) and GRN transitions between cell states, encoded by enhancers, promoters, transcription factors (TF), effector genes, and feedback loops. Based on a better mechanistic understanding, we will translate this framework to other animals, including octopus, birds, and mammals, and ask how regulatory programs evolve, with a focus on neuronal diversity in the brain. Using new algorithms for cross-species deep learning and combinatorial optimization, we will study how combinations of expressed TFs co-evolve with genomic enhancer logic. We are unique in our approach because we will develop and use new technological assays, deep learning, and massively parallel reporter assays, and combine these with perturbation experiments and synthetic biology to test our hypotheses. After iteratively improving our regulatory models, we ultimately aim to predict which regulatory programs, and thus which cell types, are encoded in an animal’s genome, and how changes in these programs underlie changes in cell types during evolution.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.