Decision making methodologies for optimal design and operation of energy systems
The central challenge in energy systems is to balance cost-efficiency, environmental responsibility, and living standards. Multi-objective optimization in such systems is critical for striking compromises among stakeholders and en...
The central challenge in energy systems is to balance cost-efficiency, environmental responsibility, and living standards. Multi-objective optimization in such systems is critical for striking compromises among stakeholders and ensuring competitiveness and sustainability. As energy systems face uncertainty, volatility, and environmental regulations, holistic optimization becomes more critical.
However, three main challenges currently hinder energy system optimization: complex models demanding substantial computational power, a lack of holistic and robust approaches, and the use of real-time data for proper operation and analysis. Although each of these challenges has been addressed individually, no contribution was able to bring them all together in a consistent methodological framework. This is the main objective of this fellowship.
This fellowship will be conducted at IST/University of Lisbon under the supervision of Prof. Henrique Matos, and aims to bridge these gaps by integrating machine learning, systems optimization, uncertainty analysis, and real-time operation. It seeks to develop advanced surrogate generation techniques, emphasize system integration and holistic analysis, optimization under uncertainty, and the use of real-time data for operation. These methods will be applied to real industrial challenges in an industrial secondment. This research project will develop methods and tools to address such challenges and contribute to a sustainable, profitable, and responsible European economy.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.