Deciphering the role of biomechanics in chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD), a chronic lung disease caused by polluted air, is the 4th most common cause of death worldwide. Adding to alveolar destruction, patients suffer from debilitating shortness of breath du...
Chronic obstructive pulmonary disease (COPD), a chronic lung disease caused by polluted air, is the 4th most common cause of death worldwide. Adding to alveolar destruction, patients suffer from debilitating shortness of breath due to obstructed and fibrotic airways. Currently, this mechanical damage is considered a by-product of airway inflammation; rarely, however, do anti-inflammatory treatments slow disease progression. New therapies are urgently needed. Recent studies suggest that mechanical changes are themselves important active drivers of COPD. I developed an innovative 3D human airway disease model (Lung-Chip) and quantitative measurements of tissue mechanics to show that airway mechanical dysfunction lowers the defense against inflammation-causing pollutants, thereby enabling a viscous cycle of disease aggravation. In addition, my airway Lung-Chip can mimic COPD-like matrix properties, e.g. fibrotic stiffness, and physiological mechanics, including breathing stretch, blood flow and air flow. These advances allow me now to faithfully mimic the airway mechanical microenvironment and systematically study how mechanical factors drive COPD progression. MecCOPD aims to 1) Measure the mechanical properties of COPD airway tissue in pioneering clinically-relevant Lung Chip models using advanced light microscopy and signal processing, 2) Reveal the contribution of mechanics to disease progression by delivering COPD-mimicking mechanical cues and measuring transcriptional, structural and secreted disease markers, 3) Determine the dynamics between mechanical factors and disease markers using statistical models. This interdisciplinary and novel approach will generate fundamental insights into how mechanical factors contribute to COPD progression and will facilitate studying other chronic lung diseases such as cancer and fibrosis. Ultimately, unravelling the COPD phenotype-mechanics relationship will lead to the discovery of new disease mechanisms and drug targets.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.