Deciphering the enigma of memory persistence how the brain stably stores inform...
Deciphering the enigma of memory persistence how the brain stably stores information using dynamic networks and unstable neurons
How does the brain store and retrieve information over time? The accepted notion that these processes rely on the neuronal ensembles that were active during learning is now challenged by findings by our lab and others that reveal...
How does the brain store and retrieve information over time? The accepted notion that these processes rely on the neuronal ensembles that were active during learning is now challenged by findings by our lab and others that reveal that different neurons and networks than those that were active during learning support persistent memory. Most notably, we found that the long-term persistence of spatial memory is correlated with the degree to which neuronal activity is spatially informative, but not with the stability of the coding carried by individual neurons. These discoveries—obtained via novel imaging technologies that enable, for the first time, to track large populations of the same neurons over weeks—expose a fundamental gap in our understanding and highlight the need to reveal how neural codes across brain circuits, including the hippocampus, entorhinal cortex, and prefrontal cortex, change over the lifetime of a memory.
Here we propose to investigate the mechanisms that govern the reorganization of memory using innovative methods we recently developed for optical imaging, large-scale data analysis, and circuit manipulation. Key among them is our ability to simultaneously and longitudinally image in two related brain areas the activity of large neuronal populations in freely behaving mice. Using these new tools, we will elucidate the factors governing the circuit dynamics of memory representations (Aim 1); how such dynamics relate to the behavioral manifestation of memory (Aim 2); how hippocampal-cortical and cortical-cortical interactions change over weeks to support remote memory (Aim 3); and what mechanisms could underlie the transfer of learned information between neurons in a network (Aim 4).
Our approach will allow us to resolve how systems-level consolidation is realized at the neural code level, both within and across brain areas, and how a stable memory is maintained over the long term despite an ever-changing neuronal representation.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.