Innovating Works

RevMito

Financiado
Deciphering and reversing the consequences of mitochondrial DNA damage
Mitochondrial DNA (mtDNA) encodes several proteins playing key roles in bioenergetics. Pathological mutations of mtDNA can be inherited or may accumulate following treatment for viral infections or cancer. Furthermore, many organi... Mitochondrial DNA (mtDNA) encodes several proteins playing key roles in bioenergetics. Pathological mutations of mtDNA can be inherited or may accumulate following treatment for viral infections or cancer. Furthermore, many organisms, including humans, accumulate significant mtDNA damage during their lifespan, and it is therefore possible that mtDNA mutations can promote the aging process. There are no effective treatments for most diseases caused by mtDNA mutation. An understanding of the cellular consequences of mtDNA damage is clearly imperative. Toward this goal, we use the budding yeast Saccharomyces cerevisiae as a cellular model of mitochondrial dysfunction. Genetic manipulation and biochemical study of this organism is easily achieved, and many proteins and processes important for mitochondrial biogenesis were first uncovered and best characterized using this experimental system. Importantly, current evidence suggests that processes required for survival of cells lacking a mitochondrial genome are widely conserved between yeast and other organisms, making likely the application of our findings to human health. We will study the repercussions of mtDNA damage by three different strategies. First, we will investigate the link between a conserved, nutrient-sensitive signalling pathway and the outcome of mtDNA loss, since much recent evidence points to modulation of such pathways as a potential approach to increase the fitness of cells with mtDNA damage. Second, we will explore the possibility that defects in cytosolic proteostasis are precipitated by mtDNA mutation. Third, we will apply the knowledge and concepts gained in S. cerevisiae to both candidate-based and unbiased searches for genes that determine the aftermath of severe mtDNA damage in human cells. Beyond the mechanistic knowledge of mitochondrial dysfunction that will emerge from this project, we expect to identify new avenues toward the treatment of mitochondrial disease. ver más
31/03/2020
1M€
Duración del proyecto: 60 meses Fecha Inicio: 2015-03-20
Fecha Fin: 2020-03-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-03-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-StG-2014: ERC Starting Grant
Cerrada hace 10 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
HELSINGIN YLIOPISTO No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5