Death and Life of Catalysts a Theory Guided Unified Approach for Non Critical M...
Death and Life of Catalysts a Theory Guided Unified Approach for Non Critical Metal Catalyst Development
Most of the developments in catalyst are still based on serendipitous and trial-and-error approaches, in which potential systems can be overlooked simply because of the sub-optimal conditions of the initial activity assessment. Me...
Most of the developments in catalyst are still based on serendipitous and trial-and-error approaches, in which potential systems can be overlooked simply because of the sub-optimal conditions of the initial activity assessment. Mechanistic and kinetic studies could provide a framework for a more adequate assessment of new catalysts, but such rigorous experiments are not practical for general catalyst discovery. Modern chemical theory and computations hold a promise to be employed in new efficient theory-guided approaches for rational catalyst and process development.
The main aim of DeLiCat is to formulate a hierarchical computational strategy for the design and synthesis of new non-critical metal-based catalysts for sustainable chemical transformations. New, durable and cheap, yet, highly active and selective tailor-made catalyst for hydrogenation of carboxylic acids and their esters as well as for acceptorless dehydrogenation of alcohols will be developed. The research will follow an innovative strategy combining advanced chemical theory, computational screening and experimental approaches from the fields of homogeneous and heterogeneous catalysis in an efficient knowledge exchange loop. Computer simulations will reveal complex reaction networks that determine the death and the life of catalyst systems. These insights will be used in targeted design of novel multifunctional catalyst systems to direct the selectivity of the reaction network and to prevent deactivation paths. Complementary experimental studies will guide and validate the theoretical predictions.
DeLiCAT represents a leap forward in unified first principles-guided catalyst design for liquid phase chemical transformations. The new theoretical concepts, methodological advances as well as the novel superior catalyst systems developed here will be applicable in various areas including biomass valorization, homogeneous and heterogeneous catalysis as well as hydrogen technology.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.